版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.对于二次函数y=﹣(x﹣2)2﹣3,下列说法正确的是()A.当x>2时,y随x的增大而增大 B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣3) D.图象与x轴有两个交点2.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则=()A. B.1 C. D.3.如图,将图形用放大镜放大,应该属于().A.平移变换 B.相似变换 C.旋转变换 D.对称变换4.下列汽车标志中,是中心对称图形的有()个.A.1 B.2 C.3 D.45.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为()A.2 B.2 C.4﹣2 D.2﹣26.在△ABC中,∠A、∠B都是锐角,且,则关于△ABC的形状的说法错误的是()A.它不是直角三角形 B.它是钝角三角形C.它是锐角三角形 D.它是等腰三角形7.如图,点A,B,C,D都在上,OA⊥BC,∠AOB=40°,则∠CDA的度数为()A.40° B.30° C.20° D.15°8.已知点、、在函数上,则、、的大小关系是().(用“>”连结起来)A. B. C. D.9.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是().A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<210.把抛物线向右平移个单位,再向下平移个单位,即得到抛物线()A.y=-(x+2)2+3 B.y=-(x-2)2+3 C.y=-(x+2)2-3 D.y=-(x-2)2-311.已知,是抛物线上两点,则正数()A.2 B.4 C.8 D.1612.二次函数(b>0)与反比例函数在同一坐标系中的图象可能是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,若AP=1,那么线段PP′的长等于_____.15.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12__S02(填“>”,“=”或”<”)16.已知实数x,y满足,则x+y的最大值为_______.17.如图,矩形ABCD的边AB上有一点E,ED,EC的中点分别是G,H,AD=4cm,DC=1cm,则△EGH的面积是______cm1.18.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.三、解答题(共78分)19.(8分)用一根长12的铁丝能否围成面积是7的矩形?请通过计算说明理由.20.(8分)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.21.(8分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.22.(10分)某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?23.(10分)如图,己知抛物线的图象与轴的一个交点为另一个交点为,且与轴交于点(1)求直线与抛物线的解析式;(2)若点是抛物线在轴下方图象上的-一动点,过点作轴交直线于点,当的值最大时,求的周长.24.(10分)“2019大洋湾盐城马拉松”的赛事共有三项:A,“全程马拉松”、B,“半程马拉松”、C.“迷你健身跑”,小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你健身跑”项目组的概率为;(2)求小明和小刚被分配到不同项目组的概率.25.(12分)如图,菱形ABCD中,∠B=60°,AB=3cm,过点A作∠EAF=60°,分别交DC,BC的延长线于点E,F,连接EF.(1)如图1,当CE=CF时,判断△AEF的形状,并说明理由;(2)若△AEF是直角三角形,求CE,CF的长度;(3)当CE,CF的长度发生变化时,△CEF的面积是否会发生变化,请说明理由.26.如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=交于点C,D.作CE⊥x轴,垂足为E,CF⊥y轴,垂足为F.点B为OF的中点,四边形OECF的面积为16,点D的坐标为(4,﹣b).(1)求一次函数表达式和反比例函数表达式;(2)求出点C坐标,并根据图象直接写出不等式kx+b≤的解集.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据二次函数的性质对进行判断;通过解方程﹣(x﹣2)2﹣3=0对D进行判断即可.【详解】∵二次函数y=﹣(x﹣2)2﹣3,∴当x>2时,y随x的增大而减小,故选项A错误;当x=2时,该函数取得最大值,最大值是﹣3,故选项B正确;图象的顶点坐标为(2,﹣3),故选项C错误;当y=0时,0=﹣(x﹣2)2﹣3,即,无解,故选项D错误;故选:B.【点睛】本题考查了二次函数的图象和性质,把求二次函数与轴的交点问题转化为解关于的一元二次方程问题可求得交点横坐标,牢记其的顶点坐标、对称轴及开口方向是解答本题的关键.2、B【解析】根据根与系数的关系得到x1+x2=-1,x1•x2=-1,然后把进行通分,再利用整体代入的方法进行计算.【详解】根据题意得x1+x2=-1,x1•x2=-1,所以==1,故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.3、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.4、B【分析】根据中心对称图形的概念逐一进行分析即可得.【详解】第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形,故选B.【点睛】本题考查了中心对称图形,熟知中心对称图形是指一个图形绕某一个点旋转180度后能与自身完全重合的图形是解题的关键.5、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=BC=1,在Rt△AOB中,OA=,根据三角形的三边关系,OP+AP≥OA,∴当O、P、A三点共线时,AP的长度最小,AP的最小值=OA﹣OP=﹣1.故选:D.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系.确定出AP最小值时点P的位置是解题关键,也是本题的难点.6、C【解析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°−∠A−∠B=180−30°−30°=120°.故选C.【点睛】本题主要考查特殊角三角函数值,熟悉掌握是关键.7、C【分析】先根据垂径定理由OA⊥BC得到,然后根据圆周角定理计算即可.【详解】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×40°=20°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.8、D【分析】抛物线开口向上,对称轴为x=-1.根据三点横坐标离对称轴的距离远近来判断纵坐标的大小.【详解】解:由函数可知:该函数的抛物线开口向上,且对称轴为x=-1.∵、、在函数上的三个点,且三点的横坐标距离对称轴的远近为:、、∴.故选:D.【点睛】主要考查二次函数图象上点的坐标特征.也可求得的对称点,使三点在对称轴的同一侧.9、D【分析】由抛物线与x轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y>0成立的x的取值范围即可.【详解】∵二次函数y=ax1+bx+c(a<0)的图象经过点(1,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<1.故选D.10、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】抛物线向右平移个单位,得:,再向下平移个单位,得:.故选:.【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.11、C【分析】根据二次函数的对称性可得,代入二次函数解析式即可求解.【详解】解:∵,是抛物线上两点,∴,∴且n为正数,解得,故选:C.【点睛】本题考查二次函数的性质,掌握二次函数的性质是解题的关键.12、B【解析】试题分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而对各选项作出判断:∵当反比例函数经过第二、四象限时,a<0,∴抛物线(b>0)中a<0,b>0,∴抛物线开口向下.所以A选项错误.∵当反比例函数经过第一、三象限时,a>0,∴抛物线(b>0)中a>0,b>0,∴抛物线开口向上,抛物线与y轴的交点在x轴上方.所以B选项正确,C,D选项错误.故选B.考点:1.二次函数和反比例函数的图象与系数的关系;2.数形结合思想的应用.二、填空题(每题4分,共24分)13、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【点睛】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.14、.【解析】解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴∠PAP′=∠BAC=90°,AP=AP′=1,∴PP′=.故答案为.15、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则S12=S1.故答案为:=.【点睛】本题考查方差的意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.16、4【解析】用含x的代数式表示y,计算x+y并进行配方即可.【详解】∵∴∴∴当x=-1时,x+y有最大值为4故答案为4【点睛】本题考查的是求代数式的最大值,解题的关键是配方法的应用.17、2【分析】由题意利用中位线的性质得出,进而根据相似三角形性质得出,利用三角形面积公式以及矩形性质分析计算得出△EGH的面积.【详解】解:∵ED,EC的中点分别是G,H,∴GH是△EDC的中位线,∴,,∵AD=4cm,DC=2cm,∴,∴.故答案为:2.【点睛】本题考查相似三角形的性质以及矩形性质,熟练掌握相似三角形的面积比是线段比的平方比以及中位线的性质和三角形面积公式以及矩形性质是解题的关键.18、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【点睛】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.三、解答题(共78分)19、用一根长12的铁丝能围成面积是7的矩形,理由见解析【分析】设这根铁丝围成的矩形的一边长为,然后根据矩形的面积公式列出方程,并解方程即可.【详解】解:设这根铁丝围成的矩形的一边长为.根据题意,得解这个方程,得,当时,;当时,答:用一根长12铁丝能围成面积是7的矩形.【点睛】此题考查的是一元二次方程的应用,掌握利用矩形的面积公式列方程是解决此题的关键.20、(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,最小值为;②.【解析】试题分析:(1)只要证到三个内角等于90°即可.(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.试题解析:解:(1)证明:如图,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.如答图1,连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴.∵AD=1,AB=2,∴BD=5.∴.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.此时,CF=CB=1.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD相切,CF=CD=2.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图2所示.S△BCD=BC•CD=BD•CF″′.∴1×2=5×CF″′.∴CF″′=.∴≤CF≤1.∵S矩形ABCD=,∴,即.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴,即,解得.∴点G移动路线的长为.考点:1.圆的综合题;2.单动点问题;2.垂线段最短的性质;1.直角三角形斜边上的中线的性质;5.矩形的判定和性质;6.圆周角定理;7.切线的性质;8.相似三角形的判定和性质;9.分类思想的应用.21、(1)∠CAD=35°;(2).【分析】(1)由AB=AC,得到=,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到结论;(2)根据平角的定义得到∠BAC=40°,连接OB,OC,根据圆周角定理得到∠BOC=80°,根据弧长公式即可得到结论.【详解】(1)∵AB=AC,∴=,∴∠ABC=∠ACB,∵D为的中点,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD=×105°=35°,∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,连接OB,OC,∴∠BOC=80°,∴弧BC的长==.【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.22、(1)该店平均每天销售礼盒10盒,种礼盒为20盒;(2)当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【分析】(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,列二元一次方程组即可解题(2)根据题意,可设种礼盒降价元/盒,则种礼盒的销售量为:()盒,再列出关系式即可.【详解】解:(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,则有,解得故该店平均每天销售礼盒10盒,种礼盒为20盒.(2)设A种湘莲礼盒降价元/盒,利润为元,依题意总利润化简得∵∴当时,取得最大值为1307,故当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.23、(1),;(2)【分析】(1)直接用待定系数法求出直线和抛物线解析式;
(2)先求出最大的MN,再求出M,N坐标即可求出周长;【详解】解:(1)设直线的解析式为,将,两点的坐标代入,得,,所以直线的解析式为;将,两点的坐标代入,得,,所以抛物线的解析式为;(2)如图1,设,,则,,当时,有最大值4;取得最大值时,,,即.,即,,可得,,的周长.【点睛】此题是二次函数综合题,主要考查了待定系数法,函数的极值,三角形的周长,三角形的面积,方程组的求解,解本题的关键是建立的函数关系式.24、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)先画树状图展示所有9种等可能的结果数,再找出其中小明和小刚被分配到不同项目组的结果数,然后根据概率公式计算.【详解】解:(1)∵共有A,B,C三项赛事,∴小明被分配到“迷你健身跑”项目组的概率是,故答案为:;(2)画树状图为:共有9种等可能的结果数,其中小明和小刚被分配到不同项目组的结果数为6,所以小明和小刚被分配到不同项目组的概率.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.25、(1)△AEF是等边三角形,证明见解析;(2)CF=,CE=6或CF=6,CE=;(3)△CEF的面积不发生变化,理由见解析.【分析】(1)证明△BCE≌△DCF(SAS),得出∠BE=DF,CBE=∠CDF,证明△ABE≌△ADF(SAS),得出AE=AF,即可得出结论;(2)分两种情况:①∠AFE=90°时,连接AC、MN,证明△MAC≌△NAD(ASA),得出AM=AN,CM=DN,证出△AMN是等边三角形,得出AM=MN=AN,设AM=AN=MN=m,DN=CM=b,BM=CN=a,证明△CFN∽△DAN,得出,得出FN=,AF=m+,同理AE=m+,在Rt△AEF中,由直角三角形的性质得出AE=2AF,得出m+=2(m+),得出b=2a,因此,得出CF=AD=,同理CE=2AB=6;②∠AEF=90°时,同①得出CE=AD=,CF=2AB=6;(3)作FH⊥CD于H,如图4所示:由(2)得BM=CN=a,CM=DN=b,证明△ADN∽△FCN,得出,由平行线得出∠FCH=∠B=60°,△CEM∽△BAM,得出,得出,求出CF×CE=AD×AB=3×3=9,由三角函数得出CH=CF×sin∠FCH=CF×sin60°=CF,即可得出结论.【详解】解:(1)△AEF是等边三角形,理由如下:连接BE、DF,如图1所示:∵四边形ABCD是菱形,∴AB=BC=DC=AD,∠ABC=∠ADC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴∠BE=DF,CBE=∠CDF,∴∠ABC+∠CBE=∠ADC+∠CDF,即∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;(2)分两种情况:①∠AFE=90°时,连接AC、MN,如图2所示:∵四边形ABCD是菱形,∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∥BC,AB∥CD,∴△ABC和△ADC是等边三角形,∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,∴∠MAC=∠NAD,在△MAC和△NAD中,,∴△MAC≌△NAD(ASA),∴AM=AN,CM=DN,∵∠EAF=60°,∴△AMN是等边三角形,∴AM=MN=AN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版合伙做生意协议书
- 2025年度校园浴池智能化改造项目承包合同2篇
- 2024年行政单位信息化建设服务委托合同3篇
- 2024年行政助理劳动合同
- 2024年金融理财产品销售担保协议3篇
- 2024年高级药房经理雇佣合同3篇
- 2025年度消防通道规划与设计合同范本豆丁发布3篇
- 2025年度企业办公设备维护与保养服务合同3篇
- 2024版二手房交易便捷协议典范
- 二零二五年专业音响设备多媒体租赁合同2篇
- GB/T 19923-2024城市污水再生利用工业用水水质
- 护理组长述职演讲
- 2024年生开心果市场需求分析报告
- 修理厂环保规定汇总
- 现代材料分析测试技术课件
- 2022-2023学年北京市海淀区高一(上)期末地理试卷
- 2024年其他招录考试-大学毕业生士兵提干笔试历年真题荟萃含答案
- 北魏政治和北方民族大交融【全国一等奖】
- 淮安市2023-2024学年七年级上学期期末历史试卷(含答案解析)
- 培养学生深度思考的能力
- 【瑞幸咖啡财务分析报告(附财务报表)5300字(论文)】
评论
0/150
提交评论