湖北省恩施市巴东县2022年数学九上期末质量跟踪监视模拟试题含解析_第1页
湖北省恩施市巴东县2022年数学九上期末质量跟踪监视模拟试题含解析_第2页
湖北省恩施市巴东县2022年数学九上期末质量跟踪监视模拟试题含解析_第3页
湖北省恩施市巴东县2022年数学九上期末质量跟踪监视模拟试题含解析_第4页
湖北省恩施市巴东县2022年数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式是()A. B.C. D.2.已知方程的两根为,则的值是()A.1 B.2 C.-2 D.43.某商品原价格为100元,连续两次上涨,每次涨幅10%,则该商品两次上涨后的价格为()A.121元 B.110元 C.120元 D.81元4.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图像可能是()A. B. C. D.5.关于的一元一次方程的解为,则的值为()A.5 B.4 C.3 D.26.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是(

)A.①④⑤ B.①③④⑤ C.①③⑤ D.①②③7.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.5B.6(1+2x)=8.5C.6(1+x)2=8.5D.6+6(1+x)+6(1+x)2=8.58.已知二次函数的解析式为(、、为常数,),且,下列说法:①;②;③方程有两个不同根、,且;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是().A.1 B.2 C.3 D.49.在做针尖落地的实验中,正确的是()A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做实验,图钉自由选取D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要10.下列计算正确的是()A. B. C.÷ D.二、填空题(每小题3分,共24分)11.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,,则线段EF的长为______.12.如图,从一块直径为的圆形纸片上剪出一个圆心角为的扇形,使点在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是________.13.已知为锐角,且,则度数等于______度.14.如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为_______.15.已知,则________16.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于_____.17.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.18.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.三、解答题(共66分)19.(10分)已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B两点,与y轴交于点C,求出△ABC的面积.20.(6分)如图,菱形ABCD中,∠B=60°,AB=3cm,过点A作∠EAF=60°,分别交DC,BC的延长线于点E,F,连接EF.(1)如图1,当CE=CF时,判断△AEF的形状,并说明理由;(2)若△AEF是直角三角形,求CE,CF的长度;(3)当CE,CF的长度发生变化时,△CEF的面积是否会发生变化,请说明理由.21.(6分)如图,在矩形ABCD中,E是边CD的中点,点M是边AD上一点(与点A,D不重合),射线ME与BC的延长线交于点N.(1)求证:△MDE≌△NCE;(2)过点E作EF//CB交BM于点F,当MB=MN时,求证:AM=EF.22.(8分)计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°23.(8分)如图.已知为半圆的直径,,为弦,且平分.(1)若,求的度数:(2)若,,求的长.24.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(1)计算:2sin30°+cos30°•tan60°.(2)已知,且a+b=20,求a,b的值.26.(10分)已知关于的一元二次方程(为实数且).(1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都是整数,求正整数的值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】二次函数绕原点旋转,旋转后的抛物线顶点与原抛物线顶点关于原点中心对称,开口方向相反,将原解析式化为顶点式即可解答.【详解】把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式:故选:D【点睛】本题考查的是二次函数的旋转,关键是掌握旋转的规律,二次函数的旋转,平移等一般都要先化为顶点式.2、A【分析】先化成一元二次方程的一般形式,根据根与系数的关系得出x1+x2,x1•x2,代入求出即可.【详解】∵2x2﹣3x=1,∴2x2﹣3x﹣1=0,由根与系数的关系得:x1+x2,x1•x2,所以x1+x1x2+x2()=1.故选:A.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解答本题的关键.3、A【分析】依次列出每次涨价后的价格即可得到答案.【详解】第一次涨价后的价格为:,第二次涨价后的价格为:121(元),故选:A.【点睛】此题考查代数式的列式计算,正确理解题意是解题的关键.4、A【分析】本题可先由一次函数y=ax+1图象得到字母系数的正负,再与二次函数y=x2+a的图象相比较看是否一致.【详解】解:A、由抛物线y轴的交点在y轴的负半轴上可知,a<0,由直线可知,a<0,正确;B、由抛物线与y轴的交点在y轴的正半轴上可知,a>0,二次项系数为负数,与二次函数y=x2+a矛盾,错误;C、由抛物线与y轴的交点在y轴的负半轴上可知,a<0,由直线可知,a>0,错误;D、由直线可知,直线经过(0,1),错误,故选A.【点睛】考核知识点:一次函数和二次函数性质.5、D【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.6、C【分析】①根据对称轴x=1,确定a,b的关系,然后判定即可;②根据图象确定a、b、c的符号,即可判定;③方程ax2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y2<y1.【详解】解:①∵对称轴为:x=1,∴则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a<0∵对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴∴c>0∴abc<0,故②不正确;∵抛物线的顶点坐标A(1,3)∴方程ax2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B(4,0),∴抛物线与x轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y2<y1;故⑤正确.故答案为C.【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.7、C【解析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【详解】解:由题意可得6(1+x)2=8.5,故选择C.【点睛】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.8、B【分析】根据a的符号分类讨论,分别画出对应的图象,根据二次函数的图象逐一分析,找出所有情况下都正确的结论即可.【详解】解:当a>0时,即抛物线的开口向上∵∴,即当x=1时,y=∴此时抛物线与x轴有两个交点,如图所示∴,故①错误;∵∴,故此时②正确;由图象可知:x1<1,x2>1∴∴,故此时③正确;当c=0时,二次函数的图象与坐标轴有两个不同交点,故④错误;当a<0时,即抛物线的开口向下∵∴,即当x=1时,y=∴此时抛物线与x轴有两个交点,如图所示∴,故①错误;∵∴,故此时②正确;由图象可知:x1<1,x2>1∴∴,故此时③正确;当c=0时,二次函数的图象与坐标轴有两个不同交点,故④错误;综上所述:①错误;②正确;③正确;④错误,正确的有2个故选B.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系和分类讨论的数学思想是解决此题的关键.9、B【解析】试题分析:根据模拟实验带有一定的偶然性,相应的条件性得到正确选项即可.A、在做第4001次时,针尖可能触地,也可能不触地,故错误,不符合题意;B、符合模拟实验的条件,正确,符合题意;C、应选择相同的图钉,在类似的条件下实验,故错误,不符合题意;D、所有的实验结果都是有可能发生,也有可能不发生的,故错误,不符合题意;故选B.考点:本题考查的是模拟实验的条件点评:解答本题的关键是注意实验器具和实验环境应相同,实验的结果带有一定的偶然性.10、C【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据完全平方公式对D进行判断.【详解】A、原式=2﹣,所以A选项错误;B、3与不能合并,所以B选项错误;C、原式==2,所以C选项正确;D、原式=3+4+4=7+4,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(每小题3分,共24分)11、3【分析】由菱形性质得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位线性质得EF=.【详解】因为,菱形ABCD中,对角线AC,BD相交于点O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因为E,F分别是的边AB,BC边的中点所以,EF=.故答案为3【点睛】本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.12、【分析】连接BC,根据圆周角定理求出BC是⊙O的直径,BC=12cm,根据勾股定理求出AB,再根据弧长公式求出半径r.【详解】连接BC,由题意知∠BAC=90°,∴BC是⊙O的直径,BC=12cm,∵AB=AC,∴,∴(cm),设这个圆锥的底面圆的半径是rcm,∵,∴,∴r=(cm),故答案为:.【点睛】此题考查圆周角定理,弧长公式,勾股定理,连接BC得到BC是圆的直径是解题的关键.13、30【分析】根据锐角三角函数值即可得出角度.【详解】∵,为锐角∴=30°故答案为30.【点睛】此题主要考查根据锐角三角函数值求角度,熟练掌握,即可解题.14、【分析】由勾股定理求出BC的长,再证明四边形DEAF是矩形,可得EF=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=9,AC=12,

∴在Rt△ABC中,利用勾股定理得:BC===15,

∵DE⊥AB,DF⊥AC,∠BAC=90°

∴∠DEA=∠DFA=∠BAC=90°,

∴四边形DEAF是矩形,

∴EF=AD,GF=EF

∴当AD⊥BC时,AD的值最小,

此时,△ABC的面积=AB×AC=BC×AD,

∴AD===,

∴EF=AD=,因此EF的最小值为;又∵GF=EF∴GF=×=

故线段GF的最小值为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、【解析】∵,∴8b=3(3a-b),即9a=11b,∴,故答案为.16、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案为16.17、4个小支干.【分析】设每个支干长出x个小支干,根据主干、支干和小分支的总数是21,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设每个支干长出x个小支干,根据题意得:,解得:舍去,.故答案为4个小支干.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.18、6+π.【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O作两边的垂线,垂足分别为D,E,连接AO,则Rt△ADO中,∠OAD=30°,OD=1,AD=,∴S△ADO=OD•AD=,∴S四边形ADOE=2S△ADO=,∵∠DOE=120°,∴S扇形DOE=,∴纸片不能接触到的部分面积为:3(﹣)=3﹣π∵S△ABC=×6×3=9∴纸片能接触到的最大面积为:9﹣3+π=6+π.故答案为6+π.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式.三、解答题(共66分)19、1.【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=×AB×OC=×4×6=1.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.20、(1)△AEF是等边三角形,证明见解析;(2)CF=,CE=6或CF=6,CE=;(3)△CEF的面积不发生变化,理由见解析.【分析】(1)证明△BCE≌△DCF(SAS),得出∠BE=DF,CBE=∠CDF,证明△ABE≌△ADF(SAS),得出AE=AF,即可得出结论;(2)分两种情况:①∠AFE=90°时,连接AC、MN,证明△MAC≌△NAD(ASA),得出AM=AN,CM=DN,证出△AMN是等边三角形,得出AM=MN=AN,设AM=AN=MN=m,DN=CM=b,BM=CN=a,证明△CFN∽△DAN,得出,得出FN=,AF=m+,同理AE=m+,在Rt△AEF中,由直角三角形的性质得出AE=2AF,得出m+=2(m+),得出b=2a,因此,得出CF=AD=,同理CE=2AB=6;②∠AEF=90°时,同①得出CE=AD=,CF=2AB=6;(3)作FH⊥CD于H,如图4所示:由(2)得BM=CN=a,CM=DN=b,证明△ADN∽△FCN,得出,由平行线得出∠FCH=∠B=60°,△CEM∽△BAM,得出,得出,求出CF×CE=AD×AB=3×3=9,由三角函数得出CH=CF×sin∠FCH=CF×sin60°=CF,即可得出结论.【详解】解:(1)△AEF是等边三角形,理由如下:连接BE、DF,如图1所示:∵四边形ABCD是菱形,∴AB=BC=DC=AD,∠ABC=∠ADC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴∠BE=DF,CBE=∠CDF,∴∠ABC+∠CBE=∠ADC+∠CDF,即∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;(2)分两种情况:①∠AFE=90°时,连接AC、MN,如图2所示:∵四边形ABCD是菱形,∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∥BC,AB∥CD,∴△ABC和△ADC是等边三角形,∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,∴∠MAC=∠NAD,在△MAC和△NAD中,,∴△MAC≌△NAD(ASA),∴AM=AN,CM=DN,∵∠EAF=60°,∴△AMN是等边三角形,∴AM=MN=AN,设AM=AN=MN=m,DN=CM=b,BM=CN=a,∵CF∥AD,∴△CFN∽△DAN,∴,∴FN=,∴AF=m+,同理:AE=m+,在Rt△AEF中,∵∠EAF=60°,∴∠AEF=30°,∴AE=2AF,∴m+=2(m+),整理得:b2﹣ab﹣2a2=0,(b﹣2a)(b+a)=0,∵b+a≠0,∴b﹣2a=0,∴b=2a,∴=,∴CF=AD=,同理:CE=2AB=6;②∠AEF=90°时,连接AC、MN,如图3所示:同①得:CE=AD=,CF=2AB=6;(3)当CE,CF的长度发生变化时,△CEF的面积不发生变化;理由如下:作FH⊥CD于H,如图4所示:由(2)得:BM=CN=a,CM=DN=b,∵AD∥CF,∴△ADN∽△FCN,∴,∵CE∥AB,∴∠FCH=∠B=60°,△CEM∽△BAM,∴,∴,∴CF×CE=AD×AB=3×3=9,∵CH=CF×sin∠FCH=CF×sin60°=CF,△CEF的面积=CE×FH=CE×CF=×9×=,∴△CEF的面积是定值,不发生变化.【点睛】本题考查了三角形全等,三角形相似的判定及性质,三角函数的应用,相似的的灵活应用是解题的关键21、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠DME=∠CNE,∠MDE=∠ECN,可证明△MDE≌△NCE(AAS);(2)过点M作MG⊥BN于点G,由等腰三角形的性质得出BG=BN=BN,由中位线定理得出EF=BN,则可得出结论.【详解】解:(1)证明:∵四边形ABCD为矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E为CD的中点,∴DE=CE,∴△MDE≌△NCE(AAS);(2)证明:过点M作MG⊥BN于点G,∵BM=MN,∴BG=BN=BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四边形ABGM为矩形,∴AM=BG=,∵EF//BN,E为DC的中点,∴F为BM的中点,∴EF=BN,∴AM=EF.【点睛】本题考查了矩形的性质,等腰三角形的性质,中位线定理,全等三角形的判定与性质等知识,熟练掌握矩形的性质是解题的关键.22、(1);(2)2.【解析】根据特殊角的锐角三角函数的值即可求出答案.【详解】(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos²45°+sin²45°)+(sin²54°+cos²54°)=1+1=2【点睛】本题考查了锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义.23、的度数为31°;(2)的长为.【分析】(1)利用角平分线定义以及圆周角定义,进行分析求的度数:(2)由题意AD与BC相交于E,过E作垂线交AB于F,根据勾股定理求出AE,并利用相似比求出AD即可.【详解】解:(1)∵为半圆的直径,,为弦,∴,∵平分,,∴,∴(2)如图AD与BC相交于E,过E作垂线交AB于F,∵平分,AE为公共边,,∴AC=AF,∵,,∴BC=,设EC=EF=x,则EB=-x,BF=4,由勾股定理:,解得x=,即EC=EF=,∴∵为公共角,,∴,∴解得.【点睛】本题结合圆相关性质考查相似三角形,结合角平分线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论