大数据在物流行业的应用_第1页
大数据在物流行业的应用_第2页
大数据在物流行业的应用_第3页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大数据在物流行业的应用物流大数据就是通过海量的物流数据,即运输、仓储、搬运装卸、包装及流通加工等物流环减少物流成本,更有效地满足客户服务要求。物流大数据就是通过海量的物流数据,即运输、仓储、搬运装卸、包装及流通加工等物流环减少物流成本,更有效地满足客户服务要求。1.物流大数据的作用1.物流大数据的作用物流大数据应用对于物流企业来讲具有以下3个方面的重要作用。物流大数据应用对于物流企业来讲具有以下3个方面的重要作用。1)提高物流的智能化水平和建议。在物流决策中,大数据技术应用涉及竞争环境分析、物流供给与需求匹配、物流资源优化与配置等。1)提高物流的智能化水平和建议。在物流决策中,大数据技术应用涉及竞争环境分析、物流供给与需求匹配、物流资源优化与配置等。在竞争环境分析中,为了达到利益的最大化,需要对竞争对手进行全面的分析,预测其行为和动向,从而了解在某个区域或是在某个特殊时期,应该选择的合作伙伴。在竞争环境分析中,为了达到利益的最大化,需要对竞争对手进行全面的分析,预测其行为和动向,从而了解在某个区域或是在某个特殊时期,应该选择的合作伙伴。在物流供给与需求匹配方面,需要分析特定时期、特定区域的物流供给与需求情况,从而进场有很强的动态性和随机性,需要实时分析市场变化情况,从海量的数据中提取当前的物流需求信息,同时对已配置和将要配置的资源进行优化,从而实现对物流资源的合理利用。在物流供给与需求匹配方面,需要分析特定时期、特定区域的物流供给与需求情况,从而进场有很强的动态性和随机性,需要实时分析市场变化情况,从海量的数据中提取当前的物流需求信息,同时对已配置和将要配置的资源进行优化,从而实现对物流资源的合理利用。2)降低物流成本2)降低物流成本高,因此可以利用大数据技术优化配送路线、合理选择物流中心地址、优化仓库储位,从而大大降低物流成本,提高物流效率。高,因此可以利用大数据技术优化配送路线、合理选择物流中心地址、优化仓库储位,从而大大降低物流成本,提高物流效率。3)提高用户服务水平随着网购人群的急剧膨胀,客户越来越重视物流服务的体验。通过对数据的挖掘和分析,以及合理地运用这些分析成果,物流企业可以为客户提供最好的服务,提供物流业务运作过程避免客户流失。3)提高用户服务水平随着网购人群的急剧膨胀,客户越来越重视物流服务的体验。通过对数据的挖掘和分析,以及合理地运用这些分析成果,物流企业可以为客户提供最好的服务,提供物流业务运作过程避免客户流失。2.物流大数据应用案例2.物流大数据应用案例针对物流行业的特性,大数据应用主要体现在车货匹配、运输路线优化、库存预测、设备修理预测、供应链协同管理等方面。针对物流行业的特性,大数据应用主要体现在车货匹配、运输路线优化、库存预测、设备修理预测、供应链协同管理等方面。1)车货匹配好的匹配,同时,结合企业的信息系统也会全面整合与优化。通过对货主、司机能力以移动学习的方式进行培训,以及和任务的精准画像,可实现智能化定价、为司机智能推荐任务和根据任务要求指派配送司机等。1)车货匹配好的匹配,同时,结合企业的信息系统也会全面整合与优化。通过对货主、司机能力以移动学习的方式进行培训,以及和任务的精准画像,可实现智能化定价、为司机智能推荐任务和根据任务要求指派配送司机等。从客户方面来讲,大数据应用会根据任务要求,如车型、配送公里数、配送预计时长、附加服务等自动超级计算机计算运力价格并匹配最符合要求的司机,司机接到任务后会按照客户从客户方面来讲,大数据应用会根据任务要求,如车型、配送公里数、配送预计时长、附加服务等自动超级计算机计算运力价格并匹配最符合要求的司机,司机接到任务后会按照客户的要求进行高质量的服务。在司机方面,大数据应用可以根据司机的个人情况、服务质量、的要求进行高质量的服务。在司机方面,大数据应用可以根据司机的个人情况、服务质量、空闲时间为他自动匹配合适的任务,并进行智能化定价。基于大数据实现车货高效匹配,不仅能减少空驶带来的损耗,还能减少污染。空闲时间为他自动匹配合适的任务,并进行智能化定价。基于大数据实现车货高效匹配,不仅能减少空驶带来的损耗,还能减少污染。2)运输路线优化通过运用大数据,物流运输效率将得到大幅提高,大数据为物流企业间搭建起沟通的桥梁,2)运输路线优化通过运用大数据,物流运输效率将得到大幅提高,大数据为物流企业间搭建起沟通的桥梁,美国UPS公司使用大数据优化送货路线,配送人员不需要自己思考配送路径是否最优。UPS采用大数据系统可实时分析20万种可能路线,3秒找出最佳路径。美国UPS公司使用大数据优化送货路线,配送人员不需要自己思考配送路径是否最优。UPS采用大数据系统可实时分析20万种可能路线,3秒找出最佳路径。UPS通过大数据分析,规定卡车不能左转,所以,UPS的司机会宁愿绕个圈,也不往左转。根据往年的数据显示,因为执行尽量避免左转的政策,UPS货车在行驶路程减少2.04亿的前提下,多送出了350000件包裹。UPS通过大数据分析,规定卡车不能左转,所以,UPS的司机会宁愿绕个圈,也不往左转。根据往年的数据显示,因为执行尽量避免左转的政策,UPS货车在行驶路程减少2.04亿的前提下,多送出了350000件包裹。3)库存预测互联网技术和商业模式的改变带来了从生产者直接到顾客的供应渠道的改变。这样的改变,从时间和空间两个维度都为物流业创造新价值奠定了很好的基础。大数据技术可优化库存结构和降低库存存储成本。3)库存预测互联网技术和商业模式的改变带来了从生产者直接到顾客的供应渠道的改变。这样的改变,从时间和空间两个维度都为物流业创造新价值奠定了很好的基础。大数据技术可优化库存结构和降低库存存储成本。运用大数据分析商品品类,系统会自动分解用来促销和用来引流的商品;同时,系统会自动根据以往的销售数据进行建模和分析,以此判断当前商品的安全库存,并及时给岀预警,而运用大数据分析商品品类,系统会自动分解用来促销和用来引流的商品;同时,系统会自动根据以往的销售数据进行建模和分析,以此判断当前商品的安全库存,并及时给岀预警,而不再是根据往年的销售情况来预测当前的库存状况。总之,使用大数据技术可以降低库存存不再是根据往年的销售情况来预测当前的库存状况。总之,使用大数据技术可以降低库存存货,从而提高资金利用率。货,从而提高资金利用率。4)设备修理预测美国UPS公司从2000年就开始使用预测性分析来检测自己全美60000辆车规模的车队,这样就能及时地进行防御性的修理。如果车在路上抛锚,损失会非常大,因为那样就需要再派一辆车,会造成延误和再装载的负担,并消耗大量的人力、物力。4)设备修理预测美国UPS公司从2000年就开始使用预测性分析来检测自己全美60000辆车规模的车队,这样就能及时地进行防御性的修理。如果车在路上抛锚,损失会非常大,因为那样就需要再派一辆车,会造成延误和再装载的负担,并消耗大量的人力、物力。以前,UPS每两三年就会对车辆的零件进行定时更换,但这种方法不太有效,因为有的零件并没有什么毛病就被换掉了。通过监测车辆的各个部位,UPS如今只需要更换需要更换的零件,从而节省了好几百万美元。以前,UPS每两三年就会对车辆的零件进行定时更换,但这种方法不太有效,因为有的零件并没有什么毛病就被换掉了。通过监测车辆的各个部位,UPS如今只需要更换需要更换的零件,从而节省了好几百万美元。5)供应链协同管理随着供应链变得越来越复杂,使用大数据技术可以迅速高效地发挥数据的最大价值,集成企业所有的计划和决策业务,包括需求预测、库存计划、资源配置、设备管理、渠道优化、生产作业计划、物料需求与采购计划等,这将彻底变革企业市场边界、业务组合、商业模式和运作模式等。5)供应链协同管理随着供应链变得越来越复杂,使用大数据技术可以迅速高效地发挥数据的最大价值,集成企业所有的计划和决策业务,包括需求预测、库存计划、资源配置、设备管理、渠道优化、生产作业计划、物料需求与采购计划等,这将彻底变革企业市场边界、业务组合、商业模式和运作模式等。良好的供应商关系是消灭供应商与制造商间不信任成本的关键。双方库存与需求信息的交互,将降低由于缺货造成的生产损失。通过将资源数据、交易数据、供应商数据、质量数据等存储起来用于跟踪和分析供应链在执行过程中的效率、成本,能够控制产品质量;通过数学模型、优化和模拟技术综合平衡订单、产能、调度、库存和成本间的关系,找到优化解决方案,能够保证生产过程的有序与匀速,最终达到最佳的物料供应分解和生产订单的拆分。良好的供应商关系是消灭供应商与制造商间不信任成本的关键。双方库存与需求信息的交互,将降低由于缺货造成的生产损失。通过将资源数据、交易数据、供应商数据、质量数据等存储起来用于跟踪和分析供应链在执行过程中的效率、成本,能够控制产品质量;通过数学模型、优化和模拟技术综合平衡订单、产能、调度、库存和成本间的关系,找到优化解决方案,能够保证生产过程的有序与匀速,最终达到最佳的物料供应分解和生产订单的拆分。3.Amazon物流大数据应用3.Amazon物流大数据应用Amazon是全球商品品种最多的网上零售商,坚持走自建物流方向,其将集成物流与大数据紧紧相连,从而在营销方面实现了更大的价值。由于Amazon有完善、优化的物流系统过程的组织运作。Amazon是全球商品品种最多的网上零售商,坚持走自建物流方向,其将集成物流与大数据紧紧相连,从而在营销方面实现了更大的价值。由于Amazon有完善、优化的物流系统过程的组织运作。Amazon在业内率先使用了大数据、人工智能和云技术进行仓储物流的管理,创新地推出Amazon在业内率先使用了大数据、人工智能和云技术进行仓储物流的管理,创新地推出1)订单与客户服务中的大数据应用Amazon1)订单与客户服务中的大数据应用Amazon了完整的端到端的5大类服务:浏览、购物、仓配、送货和客户服务等。①浏览Amazon基于大数据分析技术来精准分析客户的需求。通过系统记录的客户浏览历史,后台会随之把顾客感兴趣的库存放在离他们最近的运营中心,这样方便客户下单。①浏览Amazon基于大数据分析技术来精准分析客户的需求。通过系统记录的客户浏览历史,后台会随之把顾客感兴趣的库存放在离他们最近的运营中心,这样方便客户下单。②购物②购物品。③仓配③仓配Amazon运营中心最快可以在30分钟之内完成整个订单的处理。大数据驱动的仓储订单Amazon运营中心最快可以在30分钟之内完成整个订单的处理。大数据驱动的仓储订单运营非常高效,订单处理、快速拣选、快速包装、分拣等一切过程都由大数据驱动,且全程可视化。运营非常高效,订单处理、快速拣选、快速包装、分拣等一切过程都由大数据驱动,且全程可视化。④送货Amazon的物流体系会根据客户的具体需求时间进行科学配载,调整配送计划,实现用户Amazon还可以根据大数据的预测,提前发货,赢得绝对④送货Amazon的物流体系会根据客户的具体需求时间进行科学配载,调整配送计划,实现用户Amazon还可以根据大数据的预测,提前发货,赢得绝对的竞争力。⑤客户服务Amazon利用大数据驱动客户服务,创建了技术系统来识别和预测客户需求。根据用户的浏览记录、订单信息、来电问题,定制化地向用户推送不同的自助服务工具,大数据可以保⑤客户服务Amazon利用大数据驱动客户服务,创建了技术系统来识别和预测客户需求。根据用户的浏览记录、订单信息、来电问题,定制化地向用户推送不同的自助服务工具,大数据可以保2)智能入库管理技术在2)智能入库管理技术在Amazon全球的运营中心,从入库这一时刻就开始使用大数据技术。①入库Amazon采用独特的采购入库监控策略,基于自己过去的经验和所有历史数据的收集,来了解什么样的品类容易坏,坏在哪里,然后给其进行预包装。这都是在收货环节提供的增值服务。①入库Amazon采用独特的采购入库监控策略,基于自己过去的经验和所有历史数据的收集,来了解什么样的品类容易坏,坏在哪里,然后给其进行预包装。这都是在收货环节提供的增值服务。②商品测量Amazon的②商品测量Amazon的CubiScan仪器会对新入库的中小体积商品进行长宽高和体积的测量,并根据这些商品信息优化入库。这给供应商提供了很大方便,客户不需要自己测量新品,这样能够大大提升新品上线速度。Amazon够大大提升新品上线速度。Amazon他库房就可以直接利用这些后台数据进行后续的优化、设计和区域规划。他库房就可以直接利用这些后台数据进行后续的优化、设计和区域规划。3)智能拣货和智能算力算法Amazon使用大数据分析实现了智能拣货,主要应用在以下几个方面。3)智能拣货和智能算力算法Amazon使用大数据分析实现了智能拣货,主要应用在以下几个方面。①智能算法驱动物流作业,保障最优路径Amazon的大数据物流平台的数据算法会给每个人随机地优化他的拣货路径。系统会告诉员工应该去哪个货位拣货,并且可以确保全部拣选完之后的路径最少。通过这种智能的免费算力计算和智能的推荐,可以把传统作业模式的拣货行走路径减少至少60%。①智能算法驱动物流作业,保障最优路径Amazon的大数据物流平台的数据算法会给每个人随机地优化他的拣货路径。系统会告诉员工应该去哪个货位拣货,并且可以确保全部拣选完之后的路径最少。通过这种智能的免费算力计算和智能的推荐,可以把传统作业模式的拣货行走路径减少至少60%。②图书仓的复杂的作业方法图书仓采用的是加强版监控,会限制那些相似品尽量不要放在同一个货位。批量的图书的进货量很大“Amazon通过对数据的分析发现,穿插摆放可以保证每个员工出去拣货的任务比较平均。②图书仓的复杂的作业方法图书仓采用的是加强版监控,会限制那些相似品尽量不要放在同一个货位。批量的图书的进货量很大“Amazon通过对数据的分析发现,穿插摆放可以保证每个员工出去拣货的任务比较平均。③畅销品的运营策略Amazon根据后台的大数据,可以知道哪些物品的需求量比较高,然后会把它们放在离发货区比较近的地方,有些是放在货架上的,有些是放在托拍位上的,这样可以减少员工的负重行走路程。③畅销品的运营策略Amazon根据后台的大数据,可以知道哪些物品的需求量比较高,然后会把它们放在离发货区比较近的地方,有些是放在货架上的,有些是放在托拍位上的,这样可以减少员工的负重行走路程。4)智能随机存储随机存储是Amazon运营的重要技术,但是随机存储不是随便存储,而是有一定的原则性的。随机存储要考虑畅销商品与非畅销商品,还要考虑先进先出的原则,同时随机存储还与最佳路径有重要关系。4)智能随机存储随机存储是Amazon运营的重要技术,但是随机存储不是随便存储,而是有一定的原则性的。随机存储要考虑畅销商品与非畅销商品,还要考虑先进先出的原则,同时随机存储还与最佳路径有重要关系。随机上架是Amazon的运营中心的一大特色,实现的是见缝插针的最佳存储方式。看似杂随机上架是Amazon的运营中心的一大特色,实现的是见缝插针的最佳存储方式。看似杂乱,实则乱中有序。乱是指可以打破品类和品类之间的界线,可以把它们放在一起。有序是指库位的标签就是它的GPS,这个货位里面所有的商品其实在系统里面都是各就其位,非常精准地被记录在它所在的区域。乱,实则乱中有序。乱是指可以打破品类和品类之间的界线,可以把它们放在一起。有序是指库位的标签就是它的GPS,这个货位里面所有的商品其实在系统里面都是各就其位,非常精准地被记录在它所在的区域。5)智能分仓和智能调拨Amazon智能分仓和智能调拨拥有独特的技术优势,在Amazon中国的10多个平行仓的调拨完全是在精准的供应链计划的驱动下进行的,它实现了智能分仓、就近备货和预测式调拨。5)智能分仓和智能调拨Amazon智能分仓和智能调拨拥有独特的技术优势,在Amazon中国的10多个平行仓的调拨完全是在精准的供应链计划的驱动下进行的,它实现了智能分仓、就近备货和预测式调拨。全国各个省市包括各大运营中心之间有干线的运输调配,以确保库存已经提前调拨到离客户最近的运营中心。整个智能化全国调拨运输网络很好地支持了平行仓的概念,全国范围内只要有货用户就可以下单购买,这是大数据体系支持全国运输调拨网络的充分表现。全国各个省市包括各大运营中心之间有干线的运输调配,以确保库存已经提前调拨到离客户最近的运营中心。整个智能化全国调拨运输网络很好地支持了平行仓的概念,全国范围内只要有货用户就可以下单购买,这是大数据体系支持全国运输调拨网络的充分表现。6)精准库存预测Amazon的智能仓储管理技术能够实现连续动态盘点,对库存预测的精准率可达99.99%。6)精准库存预测Amazon的智能仓储管理技术能够实现连续动态盘点,对库存预测的精准率可达99.99%。通过大数据分析可以做到对库存需求的精准预测,在配货规划、7)可视化订单作业、,包裹追踪Amazon实现了全球可视化的供应链管理,在中国就能看到来自大洋彼岸的库存。Amazon移动学习平台可以让国内消费者、合作商和Amazon的工作人员全程监控货物、包裹位置7)可视化订单作业、,包裹追踪Amazon实现了全球可视化的供应链管理,在中国就能看到来自大洋彼岸的库存。Amazon移动学习平台可以让国内消费者、合作商和Amazon的工作人员全程监控货物、包裹位置送到客户手中,整个过程环环相扣,每个流程都有数据的支持,并通过系统实现对其的可视送到客户手中,整个过程环环相扣,每个流程都有数据的支持,并通过系统实现对其的可视化管理。化管理。4.国际物流大数据应用4.国际物流大数据应用DHL应用大数据加快了自身反应速度,通过分析客户数据做到了精准服务;UPS通过大数DHL应用大数据加快了自身反应速度,通过分析客户数据做到了精准服务;UPS通过大数RiskAdvisors可对车队管理做全程监控,甚至能觉察到司机的心理变化。1)DHLDHL速递货运公司的快运卡车被特别改装成为SmartTruck,并装有摩托罗拉的XR48ORFIO阅读器。每当运输车辆装载和卸载货物时,车载计算机会将货物上的RFID传感器的信息上传至数据中心浪潮ai1)DHLDHL速递货运公司的快运卡车被特别改装成为SmartTruck,并装有摩托罗拉的XR48ORFIO阅读器。每当运输车辆装载和卸载货物时,车载计算机会将货物上的RFID传感器的信息上传至数据中心浪潮ai服务器,服务器会在更新数据之后动态计算出最新最优的配送序列和路径。此外,在运送途中,远程信息处理数据库会根据即时交通状况和GPS数据实时更新配送路径,做到更精确的取货和交货,对随时接收的订单做出更灵活的反应,以及向客户提供有关取货时间的精确信息。如图1所示。此外,在运送途中,远程信息处理数据库会根据即时交通状况和GPS数据实时更新配送路径,做到更精确的取货和交货,对随时接收的订单做出更灵活的反应,以及向客户提供有关取货时间的精确信息。如图1所示。图1DHL物流大数据应用DHL通过对末端运营大数据的采集,实现了全程可视化的监控,以及最优路径的调度,同时精确到了每一个运营结点。此外,拥有Crowd-Based手机应用程序的顾客可以实时更新他们的位置或即将到达的目的地,DHL的包裹配送人员能够实时收到顾客的位置信息,防止配送失败,甚至按需更新配送目的地。FedExFedEx联邦快递可以让包裹主动传递信息。通过灵活的感应器(如SenseAware)来实现和环境,而司机也可在车里直接修改订单物流信息。FedEx将来可以根据收集到的历史数据和实时增量数据,通过大数据解决方案解决FedEx更多的问题,从而提升竞争力。如图2所示。图2FedEx物流大数据应用FleetBoardFleetBoard致力于通过大数据处理为物流行业用户提供远程信息化车队管理解决方案,实FleetBoard的人工智能服务器建立联系,互换数据。物流公司或车队管理者可直接访问GPS及其他若干实时数据,如车辆行驶方向,停车/行驶时间和装/卸货等信息。此外,通过计算驾驶员急加速、急刹车的次数,经济转速区行驶时间和怠速长短等信息,可以直接帮助驾驶员发现驾驶命令中的问题并改进提高。FleetBoard的物流大数据应用如图3所示。图3FleetBoard物流大数据应用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论