2023学年浙江杭州西湖区四校联考中考数学押题试卷含答案解析_第1页
2023学年浙江杭州西湖区四校联考中考数学押题试卷含答案解析_第2页
2023学年浙江杭州西湖区四校联考中考数学押题试卷含答案解析_第3页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年浙江杭州西湖区四校联考中考数学押题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为()A.80° B.70° C.60° D.40°2.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.的倒数是()A. B.-3 C.3 D.4.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为A.6 B.8 C.10 D.125.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.6.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.7.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2B.3C.4D.68.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1 B.y2 C.y3 D.y49.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38° B.39° C.42° D.48°10.下列图形中,不是轴对称图形的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_____.12.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.13.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.14.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.15.若分式的值为正数,则x的取值范围_____.16.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.三、解答题(共8题,共72分)17.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.18.(8分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p=.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!19.(8分)解不等式组请结合题意填空,完成本题的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.20.(8分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.21.(8分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.22.(10分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;23.(12分)阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为,所以,从而(当a=b时取等号).阅读2:函数(常数m>0,x>0),由阅读1结论可知:,所以当即时,函数的最小值为.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时,的最小值为__________.问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)24.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.

2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、B【答案解析】

根据平行线的性质得到根据BE平分∠ABD,即可求出∠1的度数.【题目详解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故选B.【答案点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.2、D【答案解析】

先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【答案点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3、A【答案解析】

先求出,再求倒数.【题目详解】因为所以的倒数是故选A【答案点睛】考核知识点:绝对值,相反数,倒数.4、C【答案解析】

连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【题目详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故选C.【答案点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.5、B【答案解析】

连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【题目详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【答案点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.6、B【答案解析】

连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF=,再证明∠BFC=90°,最后利用勾股定理求得CF=.【题目详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选B.【答案点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.7、C【答案解析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,

∴R=4cm.故选C.8、A【答案解析】

由图象的点的坐标,根据待定系数法求得解析式即可判定.【题目详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【答案点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.9、A【答案解析】分析:根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.详解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故选A.点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.10、A【答案解析】

观察四个选项图形,根据轴对称图形的概念即可得出结论.【题目详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.故选A.【答案点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【答案解析】

根据三视图的定义求解即可.【题目详解】主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,俯视图是三个小正方形,俯视图的面积是3,左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,几何体的三视图的面积之和是4+3+2=1,故答案为1.【答案点睛】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.12、1【答案解析】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.13、【答案解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:.故答案为.点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.14、1【答案解析】

∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.15、x>1【答案解析】测试卷解析:由题意得:>0,∵-6<0,∴1-x<0,∴x>1.16、.【答案解析】

根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【题目详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:,故答案为.【答案点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.三、解答题(共8题,共72分)17、(1)证明见解析;(2).【答案解析】

(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【题目详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积18、方案二能获得更大的利润;理由见解析【答案解析】

方案一:由利润=(实际售价-进价)×销售量,列出函数关系式,再用配方法求最大利润;方案二:由利润=(售价-进价)×500p-广告费用,列出函数关系式,再用配方法求最大利润.【题目详解】解:设涨价x元,利润为y元,则方案一:涨价x元时,该商品每一件利润为:50+x−40,销售量为:500−10x,∴,∵当x=20时,y最大=9000,∴方案一的最大利润为9000元;方案二:该商品售价利润为=(50−40)×500p,广告费用为:1000m元,∴,∴方案二的最大利润为10125元;∴选择方案二能获得更大的利润.【答案点睛】本题考查二次函数的实际应用,根据题意,列出函数关系式,配方求出最大值.19、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.【答案解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【题目详解】解:(I)解不等式(1),得x≥;(II)解不等式(1),得x≤1;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为:≤x≤1.故答案为x≥、x≤1、≤x≤1.【答案点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20、(1)见解析(2)25【答案解析】测试卷分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.测试卷解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53连接EF交于点O,∴AC⊥EF于点O,点O是AC中点.∴OE=12∴EF=53∴菱形AECF的面积是12AC·EF=25考点:1.菱形的性质和面积;2.平行四边形的性质;3.解直角三角形.21、6+.【答案解析】

利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【题目详解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【答案点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、1.【答案解析】分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.详解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=1.点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论