版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10-5C.0.75×10-4D.75×10-62.下列命题与其逆命题都是真命题的是()A.全等三角形对应角相等B.对顶角相等C.角平分线上的点到角的两边的距离相等D.若a2>b2,则a>b3.如果关于的分式方程有解,则的值为()A. B.C.且 D.且4.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁5.下列二次根式,最简二次根式是()A.8 B.12 C.5 D.6.已知:是线段外的两点,,点在直线上,若,则的长为()A. B. C. D.7.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A.6或9 B.6 C.9 D.6或128.的平方根是()A.2 B.-2 C.4 D.29.下列三角形,不一定是等边三角形的是A.有两个角等于60°的三角形 B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形 D.边上的高也是这边的中线的三角形10.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40° B.100° C.140° D.50°二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.12.如图,ABCDE是正五边形,△OCD是等边三角形,则∠COB=_____°.13.使分式有意义的x的范围是________
。14.在中,,的垂直平分线与所在的直线相交所得到的锐角为,则等于______________度.15.正十边形的外角和为__________.16.已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为__秒时,△ABP和△DCE全等.17.命题“全等三角形的面积相等”的逆命题是_____命题.(填入“真”或“假”)18.如图,边长为的等边中,一动点沿从向移动,动点以同样的速度从出发沿的延长线运动,连交边于,作于,则的长为__________.三、解答题(共66分)19.(10分)分解因式:(1)(2)20.(6分)如图,在中,已知,的垂直平分线交于点,交于点,连接(1)若,则的度数是度(2)若,的周长是①求的长度;②若点为直线上一点,请你直接写出周长的最小值21.(6分)在如图所示的直角坐标系中,(1)描出点、、,并用线段顺次连接点、、,得;(2)在直角坐标系内画出关于轴对称的;(3)分别写出点、点的坐标.22.(8分)化简求值:,其中x=1.23.(8分)如图,在平面直角坐标系中,A(﹣3,3),B(﹣1,﹣1)在y轴上画出一个点P,使PA+PB最小,并写出点P的坐标.24.(8分)如图,直线是一次函数的图像,点在直线上,请根据图像回答下列问题:(1)求一次函数的解析式;(2)写出不等式的解集25.(10分)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.26.(10分)如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,猜想线段DF和AE有怎样的关系,并说明理由.(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.
参考答案一、选择题(每小题3分,共30分)1、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000075=7.5×10-5.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、C【解析】对每个选项的命题与逆命题都进行判定即可.【详解】解:A.对应角相等的三角形不一定是全等三角形,该选项的逆命题不是真命题,故选项错误;B.两个角相等,它们不一定是对顶角,该选项的逆命题不是真命题,故选项错误;C.根据角平分线的性质与判定可得,该选项命题与其逆命题都是真命题,故选项正确;D.若a2>b2,a不一定大于b,该选项命题不是真命题,故选错误.故选:C.【点睛】本题主要考查命题与逆命题是否为真命题,解此题的关键在于一是能准确写出命题的逆命题,二是熟练掌握各个基本知识点.3、D【分析】先去分母,然后讨论无解情况,求出即可.【详解】去分母得:,则,当x=2时,为增根方程无解,则,则且,故选D.【点睛】本题是对分式方程的考查,熟练掌握分式方程知识的考查是解决本题的关键.4、A【分析】先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故选:A.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.5、C【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6、B【分析】根据已知条件确定CD是AB的垂直平分线即可得出结论.【详解】解:∵AC=BC,
∴点C在AB的垂直平分线上,
∵AD=BD,
∴点D在AB的垂直平分线上,
∴CD垂直平分AB,
∵点在直线上,∴AP=BP,∵,∴BP=5,故选B.【点睛】本题主要考查了线段的垂直平分线,关键是熟练掌握线段的垂直平分线的性质.7、D【分析】根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B为不同的两点确定b的值.【详解】解:∵AB∥x轴,∴a=4,∵AB=3,∴b=5+3=8或b=5﹣3=1.则a+b=4+8=11,或a+b=1+4=6,故选D.【点睛】本题考查了坐标与图形性质,是基础题,主要利用了平行于x轴的直线上的点的纵坐标相等,需熟记.8、D【分析】根据算术平方根的定义先求出,然后根据平方根的定义即可得出结论.【详解】解:∵=4∴的平方根是2故选D.【点睛】此题考查的是求一个数的算术平方根和平方根,掌握算术平方根的定义和平方根的定义是解决此题的关键.9、D【分析】分别利用等边三角形的判定方法分析得出即可.【详解】A.根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B.有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C.三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D.边上的高也是这边的中线的三角形,也可能是等腰三角形,符合题意,故此选项正确.故选D.【点睛】本题主要考查了等边三角形的判定,注意熟练掌握:由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.10、B【分析】设点P关于OM、ON的对称点,当点A、B在上时,△PAB的周长为PA+AB+PB=,此时周长最小,根据轴对称的性质,可求出∠APB的度数.【详解】分别作点P关于OM、ON的对称点,连接,交OM、ON于点A、B,连接PA、PB,此时△PAB的周长取最小值等于.由轴对称性质可得,,,,∴,∴,又∵,,∴.故选B.【点睛】本题考查了轴对称-最短路线问题,根据两点之间线段最短的知识画出图形是解题的关键.二、填空题(每小题3分,共24分)11、【解析】试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.12、66°【分析】根据题意和多边形的内角和公式,可得正五边形的一个内角是108°,再根据等边三角形的性质和等腰三角形的性质计算即可.【详解】解:∵五边形ABCDE是正五边形,∴∠BCD=108°,CD=BC,∵△OCD是等边三角形,∴∠OCD=60°,OC=CD,∴OC=BC,∠OCB=108°﹣60°=48°,∴∠COB==66°.故答案为:66°.【点睛】本题主要考察了多边形的内角和,关键是得出正五边形一个内角的度数为108°,以及找出△OBC是等腰三角形.13、x≠1【分析】根据分式有意义的条件可求解.【详解】分母不为零,即x-1≠0,x≠1.故答案是:x≠1.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14、65°或25°【分析】(1)当△ABC是锐角三角形时,根据题目条件得到∠A=50°,利用△ABC是等腰三角形即可求解;(2)当△ABC是钝角三角形时,同理可得即可得出结果.【详解】解:(1)当△ABC是锐角等腰三角形时,如图1所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠A=180°-90°-40°=50°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-50°)÷2=65°(2)当△ABC是钝角三角形时,如图2所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠AED+∠ADE=∠BAC∴∠BAC=90°+40°=130°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-130°)÷2=25°∴∠ABC=65°或25°故答案为:65°或25°【点睛】本题主要考查的是垂直平分线以及三角形的外角性质,正确的运用这两个知识点是解题的关键.15、360°【分析】根据多边形的外角和是360°即可求出答案.【详解】∵任意多边形的外角和都是360°,∴正十边形的外交和是360°,故答案为:360°.【点睛】此题考查多边形的外角和定理,熟记定理是解题的关键.16、1或2【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=11-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=11﹣2t=2,解得t=2.所以,当t的值为1或2秒时.△ABP和△DCE全等.故答案为:1或2.【点睛】本题考查了全等三角形的判定,要注意分类讨论.17、假【解析】试题分析:原命题的逆命题为:面积相等的两个三角形为全等三角形,则这个命题为假命题.考点:逆命题18、1【分析】作PF∥BC,易证△APF为等边三角形,可得AE=EF,易证∠Q=∠DPF,即可证明△DPF≌△DQC,可得CD=DF,即可求得DEAC,即可得出结论.【详解】作PF∥BC交AC于F.∵△ABC是等边三角形,∴∠A=∠B=60°.∵PF∥BC,∴∠APF=∠B=60°,∠Q=∠DPF,∴∠A=∠APF=60°,∴△APF为等边三角形,∴PF=AP,∴PF=CQ.∵PE⊥AD,∴AE=EF.在△DPF和△DQC中,∵,∴△DPF≌△DQC(AAS),∴CD=DF,∴DE=DF+EF=AE+CDAC=1.故答案为:1.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,证明△DPE≌△DQC是解答本题的关键.三、解答题(共66分)19、(1)n(m+2)(m﹣2);(2)【分析】(1)通过提公因式及平方差公式进行计算即可;(2)通过提公因式及完全平方公式进行计算即可.【详解】(1)原式==n(m+2)(m﹣2)(2)原式=【点睛】本题主要考查了因式分解,熟练掌握提公因式法及公式法进行计算是解决本题的关键.20、(1)40°;(2)①8;②【分析】(1)根据垂直平分线上的点到线段两个端点距离相等得,再根据等腰三角形的性质即可求解;(2)①根据垂直平分线的性质得,的周长是,,即可求的长度;②当点与点重合时,周长的最小,即为的周长.【详解】解:(1),,,,是的垂直平分线,,,,,.故答案为.(2)①,的周长是,即,,,.答:的长度为.②点B关于MN对称点为A,AC与MN交于点M,∴当点与点重合时,周长的值最小,且为AC+BC=10+8=18cm,∴的周长的最小值为.【点睛】本题考查了轴对称—最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.21、(1)见详解;(2)见详解;(3)点、点【分析】(1)根据A,B坐标的特点在第二象限找到A,B的位置,O为坐标原点,然后顺次连接即可;(2)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标不变,找到相应的点,顺次连接即可;(3)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标不变即可写出点、点的坐标.【详解】(1)如图(2)如图(3)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标不变即可得点、点【点睛】本题主要考查画轴对称图形,掌握关于轴对称的点的特点是解题的关键.22、,.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【详解】原式==-=当x=1时,原式=【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23、点P的坐标(0,0)【分析】先作出点A关于y轴的对称点C,然后连接BC,求出BC的解析式,最后求出与y轴的交点即可.【详解】解:∵A(﹣3,3),∴点A关于y轴对称的点C(3,3),连接BC交y轴于P,则PA+PB最小,设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=x,∴点P的坐标(0,0).【点睛】本题主要考察了作图,解题的关键是掌握轴对称变换的性质,并且能正确得出变换后对应的点.24、(1);(2).【分析】(1)根据待定系数法,即可得到答案;(2)根据一次函数图象经过点,当时,,即可得到答案.【详解】(1)由图像知,函数图像过两点,得:,解得,∴;(2)∵一次函数图象经过点,∴当时,,即:不等式的解集是:.【点睛】本题主要考查一次函数的待定系数法以及一次函数与不等式的关系,掌握待定系数法,是解题的关键.25、(1)见解析;(2)①见解析;②GE=【分析】(1)由垂美四边形得出AC⊥BD,则∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,即可得出结论;
(2)①连接BG、CE相交于点N,CE交AB于点M,由正方形的性质得出AG=AC,AB=AE,∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS证得△GAB≌△CAE,得出∠ABG=∠AEC,由∠AEC+∠AME=90°,得出∠ABG+∠AME=90°,推出∠ABG+∠BMN=90°,即CE⊥BG,即可得出结论;
②垂美四边形得出CG2+BE2=CB2+GE2,由勾股定理得出BC==3,由正方形的性质得出CG=4,BE=5,则GE2=CG2+BE2-CB2=73,即可得出结果.【详解】(1)证明:∵垂美四边形ABCD的对角线AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①证明:连接BG、CE相交于点N,CE交AB于点M,如图2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形BCGE是垂美四边形;②解:∵四边形BCGE是垂美四边形,∴由(1)得:CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵正方形ACFG和正方形ABDE,∴CG=AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书馆石材装修施工合同
- 美妆专柜促销员招聘合同样本
- 私人岛屿管家聘用协议
- 咨询顾问个人聘用合同样本
- 电动汽车充电桩投标文件范本
- 市政设施改造投标保证
- 矿业风险监控与控制
- 学校防汛管理办法
- 电影制作设备融资租赁合同样本
- 环保工程杂工临时协议
- 2023年-2024年小学数学教师《小学数学教学论》考试题库及答案
- MOOC 发展与教育心理学-福建师范大学 中国大学慕课答案
- 中华民族共同体概论课件专家版5第五讲 大一统与中华民族共同体初步形成(秦汉时期)
- 2024年公文写作考试题库(含答案)
- 2024年中央金融工作会议精神心得体会1000字(8篇)
- 2024入团考试题库考试100题题库(含答案)
- 保安培训记录内容
- 公务快艇常规安全
- 2021-2022学年部编版高中语文选择性必修上册字音字形成语知识梳理
- 2023电信网和互联网应用程序接口数据安全技术要求和测试方法
- GB/T 19964-2024光伏发电站接入电力系统技术规定
评论
0/150
提交评论