版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验一弦线上横波传播规律的研究在生活、生产和科学研究领域中驻波现象很普遍,它的应用也比较广泛。青少年学生对驻波现象应有所认识和了解,知道它是由波的干涉所形成。本实验利用驻波原理测量横波的波长,使用SWV-1弦线波振动实验仪,研究弦线上横波的传播规律。一、实验目的:观察驻波现象。学习利用驻波原理测量横波波长的方法。验证弦线上横波的传播规律。了解驻波与生活、生产和科研的联系。实验一弦线上横波传播规律的研究1二、实验原理:沿弦线传播的横波其运动方程和波动方程分别为:(T为张力,μ为线密度)(1)(v为波的传播速度)(2)相比较可得:二、实验原理:(T为张力,μ为线密度)(1)2∵v=f
(f为频率,为波长)
(3)将(3)两边取对数,得:
(4)实验将证明(4)式成立。∵v=f(f为频率,为波长)3三、实验器材:SWV-1弦线波振动实验仪、弦线、砝码盘及砝码。实验仪器示意图:三、实验器材:4四、实验内容:
1.观察驻波现象。2.固定张力T和弦线长度,改变振动频率f,测量波长。作ln-lnf图。3.固定振动频率和弦线长度,改变张力T,测定波长。作ln-lnM图四、实验内容:5五、实验步骤:1、接通电源,打开面板上的电源开关,数码管显示振动源的振动频率。按▲或▼键,改变振动源的振动频率,调节面板上振幅调节旋钮,使振动源有振动输出。左右移动可动滑轮B的位置,在弦线上形成驻波。观察驻波,学习测量波长。2、固定砝码质量不变,改变振动源的频率。每改变一次频率,均要左右移动可动滑轮B的位置,使弦线出现振幅较大而稳定的驻波。记录振动频率、砝码质量、测量弦线波长。3、固定振动源的频率,在砝码盘上添加不同质量的砝码,以改变同一弦线上的张力。每改变一次张力,均要左右移动可动滑轮B的位置,使弦线出现振幅较大而稳定的驻波。记录振动频率、砝码质量,测量弦线波长。五、实验步骤:6实验二用冷却法测定金属的比热容
本实验以铜样品为标准样品,采用冷却法测定铁、铝样品在℃时的比热容。样品温度的变化由热电偶温度计反映。热电偶数字显示测温技术是当前生产实际中常用的测试方法,它比用一般的温度计测温有着测量范围广、计值精度高、可以自动补偿热电偶的非线性因素等优点。一、实验目的:1.了解冷却定律。2.学会用冷却法测量金属的比热容。3.学习把曲线变为直线的一种数据处理方法。实验二用冷却法测定金属的比热容7二、实验原理:将质量为M1的金属样品加热后,放在较低温度的介质中(例如室温的空气),经过对流,样品将逐渐冷却,单位时间内其热量损失应与温度下降速率成正比,于是可得到关系式:
(1)式中表示单位时间内样品因对流而损失的热量,c1为金属样品在温度时的比热容,为金属样品在温度时的温度下降速率。根据冷却定律,样品因对流而损失的热量由下式表示:
(2)式中a1为热交换系数,S1为样品外表面的面积,α为常数(强迫对流时α=1,自然对流时α=5/4),为样品温度,为周围介质的温度。二、实验原理:式中a1为热交换系数,S1为样品外表面的面积8由式(1)和(2)可得(3)对质量为M2比热容为c2的另一种样品,则有同样的表达式
(4)(3)和(4)相除,得
(5)由式(1)和(2)可得9如果两样品的形状与尺寸相同,即S1=S2
;两样品的表面状况也相同,而周围介质(空气)的性质也不变,则有a1=a2。于是,当周围介质温度不变,(即室温度恒定)两样品又处于相同温度时,(5)也可以简化为(6)分别是第一种样品和第二种样品在温度时的冷却速率。如果两样品的形状与尺寸相同,即S1=S2;两样品的表面状况10根据冷却规律,假设金属固体在不太高的温度范围内,比热容随温度变化很小,则(3)式可写成:(7)两边取对数:(8)通过实验,作出()~t冷却曲线,在冷却曲线上作切线,并求出曲线的斜率(如图1),得到各温度的冷却速率。根据冷却规律,假设金属固体在不太高的温度范围内,比热容随温度11图1冷却曲线图2在双对数坐标纸上以为横轴,以为纵轴,作~图(见图2)。图1冷却曲线12由(8)式可知各实验点将连成一直线,直线的斜率为α,截距为lg(a1S1/cM1),将α、a1S1/cM1代入(7)式,可得样品冷却表达式。
如果已知标准金属样品的比热容C1、质量M1;待测样品的质量M2及两样品在温度θ时冷却速率之比,通过(6)式就可以求出待测的金属材料的比热容C2。由(8)式可知各实验点将连成一直线,直线的斜率为α,截距为l13三、实验器材:DH4603冷却法金属比热容测量仪,待测量的金属材料铜、铁和铝。 本实验装置(见上图)由加热仪和测试仪组成。加热仪的加热装置可通过调节手轮自由升降。被测样品安放在样品室内的底座上,测温热电偶放置于被测样品内的小孔中。当加热装置向下移动到底后,对被测样品进行加热;样品需要降温时则将加热装置移上。仪器内设有自动控制限温装置,防止因长时间不切断加热电源而引起温度不断升高。三、实验器材:14四、实验内容:1.用电子天平秤出铜、铁、铝三种金属样品的质量。2.测出铜、铁、铝三种金属样品在100℃时的冷却速率。3.已知100℃时铜的比热容Ccu=0.0940cal/(gK),由式(6)分别求出铁和铝在100℃时的比热容。四、实验内容:15五、实验步骤:1、开机前先连接好加热仪和测试仪,共有加热四芯线和热电偶线两组线。2.选取长度、直径、表面光洁度尽可能相同的铜、铁、铝三种金属样品,用电子天平称出它们的质量,再根据MCu>MFe>MA1这一特点,把它们区别开来。3.将热电偶的冷端置于冰水混合物中。将热电偶端的铜导线与数字表的正端相连,冷端铜导线与数字表的负端相连。4.按铁、铜、铝的次序分别将被测样品安放在样品室内的底座上,测温热电偶放置于被测样品内的小孔中。当加热装置向下移动到底后,对被测样品进行加热。5.当样品加热到150℃时(此时热电势显示约为6.7mV),切断电源移去加热源,样品继续安放在与外界基本隔绝的有机玻璃圆筒内自然冷却(筒口须盖上盖子)。记录样品的冷却速率。具体做法是记录数字电压表上示值约从降到所需的时间(因为数字电压表上的值显示数字是跳跃性的,所以只能取附近的值),从而计算。每一样品应重复测量5次。五、实验步骤:16实验三磁场的描绘
测量磁场的方法很多,常用的有电磁感应法、半导体(霍尔效应)探测法和核磁共振法。本实验采用电磁感应法,应用先进的玻莫合金磁阻传感器作探头,测量圆线圈和亥姆霍兹线圈磁场。与探测线圈、霍尔传感器作测量探头相比,玻莫合金磁阻传感器具有灵敏度高、抗干扰能力强、可靠性高、易于测量等优点,有助于学生深入研究弱磁场和地球磁场等。一、实验目的:1.通过测量和描绘圆线圈轴线上的磁场分布,学习弱磁场的测量方法。2.验证毕奥-萨伐尔定理。证明磁场迭加原理。3.用亥姆霍兹线圈校正和测量磁阻传感器作探头的弱磁特斯拉仪线性度。4.学习测量地磁的水平分量(选做)。实验三磁场的17二、实验原理:1.载流圆线圈的磁场半径为R的圆线圈,通以电流,根据毕奥一沙伐尔定律,可计算出沿圆形电流轴线方向的磁感应强度B。它是一个非均匀磁场,在轴线方向的量值为(1)式(1)中,N是圆线圈的匝数,x为轴线上测量点离圆线圈中心的距离,μ0为真空磁导率()。二、实验原理:(182.亥姆霍兹线圈的磁场一对相同的载流圆线圈彼此平行且共轴,通以同方向电流,当线圈间距d等于线圈半径R时,则两个载流圆线圈的总磁场在轴的中点附近的较大范围内是均匀的。这对线圈称为亥姆霍兹线圈。载流圆线圈及亥姆霍兹线圈的磁场分布见下图。(a)载流圆线圈磁场分布(b)亥姆霍兹线圈磁场分布图1载流圆线圈及亥姆霍兹线圈的磁场分布2.亥姆霍兹线圈的磁场(a)载流圆线圈磁场分布(b)亥19三、实验器材磁阻传感器;圆线圈和亥姆霍兹线圈实验平台(台面上有1厘米的等距离刻线组);高灵敏度三位半数字毫伏表、三位半数字电流表和直流稳流电源(组成在一个仪器箱内)。实验装置简图如图2所示。三、实验器材20四、实验内容:1、测量和描绘单个圆线圈轴线上的磁场分布,验证毕奥-萨伐尔定理。2、测量和描绘亥姆霍兹线圈的磁场分布,证明磁场迭加原理。用亥姆霍兹线圈校正和测量磁阻传感器作探头的弱磁特斯拉仪线性度。3、测量地磁的水平分量(选做)。四、实验内容:21五、实验步骤:1.按图2所示安装仪器。用直尺测量线圈外径到工作台中心线的距离,适当调节,使两线圈的轴心线与工作台中心线重合。按实验要求,调节线圈间距,并使线圈平面与实验工作台垂直。2.磁阻传感器探头插头内缺口向上,插入仪器上插座。然后仪器通电,预热十五分钟。3.测量载流圆线圈a(左线圈)在轴线上的磁感应强度Ba。每移动一格,测量一次Ba,记录数据。4.在亥姆霍兹线圈的轴线上,先测量直流电流通过单个圆线圈a和单个圆线圈b产生的磁感应强度Ba和Bb,然后测量直流电流通过亥姆霍兹线圈产生的磁场Ba+b。5.传感器置于亥姆霍兹线圈轴线中心,改变线圈电流,测量磁感应强度B。用亥姆霍兹线圈校正和测量磁阻传感器作探头的弱磁特斯拉仪线性度。五、实验步骤:22实验四电学元件伏安特性的测量伏特计、安培计法是一种较为普遍的测量电学元件的电阻的方法,虽然精确度不很高,但所用的测量仪器(如伏特计和安培计)却较简单,使用也方便。由于电表的内阻往往对测量结果有影响,所以这种方法常带来明显的系统误差。若改用补偿法来测量电压,则可避免这个缺点。一、实验目的:1.学会正确使用电学基本测量仪器。2.掌握电学元件伏安特性测量的基本方法。3.学会分析伏安法的电表接人误差,正确选择测量电路。实验四电学元件伏安特性的测23二、实验原理:1.两种测量电路的分析在一定温度下,当直流电流通过某一待测电阻时,用电压表测出两端的电压U,同时用电流表测出通过的电流I,根据欧姆定律计算:这种测量电阻的方法即伏安法。若U/I为常量,则该电阻称为线性电阻;若U/I不为常量,则称该电阻为非线性电阻(非线性元件),如二极管等。在实际测量中,由于电流表和电压表各存在内阻和,所以用(1)式计算出的和真实值不一致,而且选用不同的测量电路,其系统误差也不相同。以下是两种测量电路的分析。二、实验原理:这种测量电阻的方法即伏安法。若U/I为常24
电流表内接:如图1(a)所示,实验中电流表显示出流过的电流I,
,但电压表所显示的电压为和上的电压之和,即或。(a)电流表内接(b)电流表外接电流表内接:如图1(a)所示,实验中电流表显示出流过25
2.二极管的伏安特性(非线性电阻)半导体二极管是由P型和N型半导体材料组成的,其核心部分是一个PN结,PN结处在P区和N区的相连处。若电压加在二极管上,P端接高电位,N端接低电位,称为“正向连接”。半导体二极管的结构及符号见图2。二极管以正向连接时,很容易导通,电路中电流比较大。随着正向电压的增加,电流增加,电流的大小并不与电压成正比。即R=U/I公式成立,但R不为常量,且其值变化范围很大。以正向电压U和正向电流I的对应关系作图,称为二极管的正向伏安特性曲线,见图3。同样地,测二极管的正向I—U特性曲线,也要考虑到电流表内接或外接的问题,以尽量减小电表的测量误差。2.二极管的伏安特性(非线性电阻)26三、实验器材:直流稳压电源E、开关K、滑线变阻器(可调电位器Ro)、数字多用表(电流表mA)、数字万用表(电压表V)、待测线性电阻R、待测二极管。四、实验内容:用内接法和外接法分别测电阻R。测二极管的正向伏安特性,作图线。五、实验步骤:1.连接好线路,逐次测量。实验线路如下图所示。每次测量之前,将开关K断开,首先估算并调节电流表、电压表、滑线变阻器Ro所应放置的合适档位。三、实验器材:27
2.测量数据(1)按图4(a)连线,用外接法分别测电阻R1,将实验数据记入表l中。(2)按图4(b)连线,用内接法分别测R1,将实验数据记入表2中。(3)按右图(c)连线,测二极管的正向伏安特性(注意二极管的正负极性)。对于不同型号的二极管,各正向电压、电流的参数不同,应正确确定电压和电流的测量范围,以及电压间隔的选取。将测量数据记人表中。3.以为横坐标,以为纵坐标,在毫米方格纸上作出二极管的正向伏安特性曲线。2.测量数据28实验五测定波璃的折射率当光线以一定的入射角穿过两面平行的玻璃板时,传播方向不变,但是出射光线跟入射光线相比,有一定的侧移。根据这一特点,可用插针法求玻璃的折射率。一、实验目的:1.加深对折射定律的理解。2.学习用插针法测定玻璃的折射率。二、实验原理:根据光的折射定律,求玻璃对空气的折射率。ANO''V1OP1P2iBaba'b'N'rP3P4实验五测定波璃的折射率A29三、实验器材:长方形玻璃砖、白纸、大头针、图钉、直尺、锤子、绘图板、量角器等。四、实验内容:用插针法测定玻璃的折射率,求玻璃对空气的折射率。五、实验步骤:1.用图钉把白纸钉在绘图板上。2.在白纸上画一条直线aa‘作为界面,过aa’上的一点O画出界面的法线NN‘,并画一条线段AO作为入射光线。3.把玻璃砖平放在纸上,使它的长边跟aa'对齐,画出玻璃砖的另一边bb',此后不要再移动玻璃砖的位置。三、实验器材:304.在线段AO上竖直地插上两枚大头针P1、P2。5.透过玻璃砖观察大头针P1、P2的像,调整视线的方向,直到P1的像被P2挡住。再在观察的这一侧插两枚大头针P3、P4,使P3挡住P1、P2,P4挡住P1、P2、P3。记下P3、P4的位置。6.移去大头针和玻璃砖,过P3P4引直线O'B,与bb'交于O'。连接OO'。这样入射角i=∠AON,折射角r=∠O'ON'。7.用量角器量出入射角和折射角,查出它们的正弦值,填入表格。8.用上面的方法,分别求出多组入射角和对应的折射角,查出它们的正弦值,记入表格。9.对表格中的数据进行处理,求出玻璃对空气的折射率n。4.在线段AO上竖直地插上两枚大头针P1、P2。31实验六单摆测量重力加速度要研究周期与摆角的关系,就必须在不同的摆角,甚至在大摆角下进行周期测量。由于空气阻尼的存在,无法精确测得大角度下摆动周期的准确值。采用集成开关型霍耳传感器和电子计时器实现自动计时后,能够在很短的几个周期内准确测得单摆在大角度下的周期,这样就可以忽略空气阻尼对摆角的影响,使研究周期与摆角关系的实验得以顺利进行。在得到周期与摆角的关系后,可以用外推至摆角为零的方法,精确测得摆角极小时的振动周期值,从而更精确地测定重力加速度。一、实验目的:1.验证单摆摆长与周期之间的关系,并求出重力加速度。2.测量摆角与周期之间的关系,作关系图,求出重力加速度。3.学会运用外推法求所需的物理量。实验六单摆测量重力加速度32二、实验原理:1.周期与摆长的关系当摆角θm很小时(小于3°),单摆的振动周期T和摆长L有如下近似关系:或(1)如固定摆长L,测出相应的振动周期T,由(1)式可以求出g。也可以逐次改变摆长L,测量各相应的周期T,再求出T2,最后在坐标纸上作T2-L图。如图是一条直线,说明T2与L成正比关系。求出该直线的斜率k,由可以求出g。二、实验原理:或332.周期与摆角的关系在忽略空气阻力和浮力的情况下,由单摆振动时能量守恒,可以得到质量为m的小球在摆角为θ处动能和势能之和为常量,即:
(2)式中,L为单摆摆长,θ为摆角,g为重力加速度,t为时间,E0为小球的总机械能。因为小球在摆幅为θm处释放,则有E0=mgL(1-cosθm),代入(2)式,解方程得到
(3)2.周期与摆角的关系(234(3)式中T为单摆的振动周期。令k=sin(θm/2),并作变换sin(θ/2)=ksinφ,则有
经过近似计算可得
(4)以往的单摆实验对(4)式只能考虑到一级近似,现在单摆振动周期可以精确测量了,即可用二级近似公式。于是测出不同的θm所对应的二倍周期2T,作出图,并对图线外推,从截距2T得到周期T,就可以进一步得到重力加速度g。(3)式中T为单摆的振动周期。经过近似计算可得35三、实验器材:FD-DB-Ⅱ型单摆实验仪四、实验内容:1.当摆角θm很小时(小于3°),逐次改变摆长L,测量各相应的周期T,在坐标纸上作T2-L图,求出图线的斜率k,由
求出g。2.固定摆长L,测出不同的摆角θm所对应的周期T,作出图,并对图线外推,从截距2T得到周期T,进一步求得重力加速度g。三、实验器材:36五、实验步骤:1.以静止的单摆线为铅垂线,移动米尺上所附的平面镜,使悬点在平面镜上的水平横线处成像。仔细调节,使悬点、横划线、悬点的像三点共线。记下横划线在米尺上的读数,即悬点的位置。2.在平面镜的上方装上传感器,再移动至摆球下方约1.0cm处。在金属小球底部贴上一块小型钕铁硼磁钢,调节摆线的长度,使磁钢产生的磁场能被传感器接收到。调节计时器,预置开关次数(不宜太大,实验中可用10次,即5个周期)。3.将小球拉开一段距离,用水平直尺测量x的距离,应用三角函数计算出摆角θ的大小。4.在摆角θ小于3°条件下,取5组摆长,每一摆长都做5次,测相应的周期T。将所得的数据填入表1中。5.固定摆长,改变摆角(即改变x的距离),取6组摆角(θ小于45°即可)。每组测6次,测相应的周期T。将所得的数据填入表2中。五、实验步骤:37实验七声速的测量(超声)声速是描述声波在媒质中传播快慢的物理量。其测量方法可分为两大类:一类是根据公式,测出声波传播路程s所需要的时间,去求;另一类是利用公式,测量声波的频率和波长去求声速。在本实验中用的是后一种方法。一、实验目的:1.运用振幅极值法(驻波法)测声波在空气中的速度。2.了解电压换能器的功能。3.学习用逐差法处理实验数据。实验七声38二、实验原理:由发射器发生的声波经空气传播到一定距离的接受器,如果接受面与发射面平行,声波即在两面间来回反射形成驻波,当两面之间的距离为半波长的整数倍时,接受器上的声压达到最大值。测出声压最大值的位置L1、L2、L3…相邻两次极大值之间的距离为半波长。如已知声波的频率,由可以求出声波在空气中的速度。三、实验器材:低频信号发生器、数字频率计、压电陶瓷超声换能器一对、游标卡尺、同轴电缆、示波器等。四、实验内容:运用振幅极值法(驻波法)测声波在空气中的速度,并求出误差。二、实验原理:39五、实验步骤:1.连接测试系统。2.在收发超声换能器间隔几厘米时,调整测试系统频率,在示波器上看到接受信号幅度最大。记下此时接受器的位置。3.改变接受器位置,测出相继出现10个接受器信号最大值位置L,从分开和靠拢两次求平均值。用分组逐差法求出波长,并记下信号频率和室温。4.求出声速,求出误差。五、实验步骤:40实验八气垫导轨上的碰撞实验气垫导轨简称气轨,它利用从导轨表面小孔喷出的压缩空气,在导轨和滑块之间形成一层很薄的“气垫”,使滑块漂浮在气垫上。当滑块在气轨上运动时,仅受到很小的空气粘滞性摩擦阻力,这样滑块的运动可近似地认为是无摩擦的运动。本实验运用气垫导轨技术研究一维碰撞运动中的动量和能量问题。一、实验目的:1.验证动量守恒定律。2.了解非完全弹性碰撞与完全非弹性碰撞的特点。实验八气垫导轨上的碰撞实验41二、实验原理:当两滑块在水平的导轨上沿直线作对心碰撞时,根据动量守恒定律,两滑块的总动量在碰撞前后保持不变。即
(1)式(1)中为滑块1的质量,和是滑块1碰撞前和碰撞后的动量。为滑块2的质量,和是滑块2碰撞前和碰撞后的动量。两滑块碰撞后的相对速度与碰撞前相对速度的比值称为恢复系数,用e表示,即(2)当e=1时,两滑块的碰撞为完全弹性碰撞;当e=0时,两滑块的碰撞为完全非弹性碰撞;当0<e<1时,两滑块的碰撞为非完全弹性碰撞。二、实验原理:421.非完全弹性碰撞取滑块1的质量大于滑块2的质量,先使滑块2静止,然后推动滑块1去撞滑块2。则有碰撞前后动能的变化为
(3)(4)2.完全非弹性碰撞滑块2先静止,然后推动滑块1去撞滑块2,碰撞后两滑块粘在一起,以同一速度运动。则有
(5)碰撞前后动能的变化为
(6)1.非完全弹性碰撞碰撞前后动能的变化为43三、实验器材:
气垫导轨、滑块、光电门、数字毫秒计、游标卡尺、尼龙粘胶带或橡皮泥。四、实验内容:研究非完全弹性碰撞与完全非弹性碰撞的性质,验证动量守恒定律。五、实验步骤:1.调平气轨,检查滑块碰撞弹簧,保证对心碰撞。2.进行非完全弹性碰撞。适当安置光电门A、B的位置,使能顺序测出3个时间t1A、t2B、t1B,并在可能条件下使A、B距离小些。每次碰撞时,需使=0,也不要太大。三、实验器材:443.进行完全非弹性碰撞。两滑块的相对碰撞面上加上尼龙胶带,使=0,进行碰撞。4.计算结果和分析。两类碰撞,碰撞后、前动量之比。两类碰撞,碰撞前后动能变化。非完全弹性碰撞时的恢复系数。对实验结果作分析与评价。六、实验数据:1.非完全弹性碰撞==d1=d2=t10/st1/st2/sV10(m/s)V1(m/s)V2(m/s)c△Ek/-10-7JeC为碰撞后动量和与碰撞前动量和之比。2.完全非弹性碰撞==d1=d2=t10/st2/sV10(m/s)V2(m/s)c△Ek/-10-7JC为碰撞后动量和与碰撞前动量和之比。3.进行完全非弹性碰撞。45实验九用DIS实验系统测小车的加速度现代信息技术给物理量的测量带来了革命性的变化,不但简单方便,而且测量精度高,误差小。利用数字化、信息化技术进行实验研究,简称为DIS实验,DIS是英文digitalinformationsystem的缩写。本实验是应用DIS实验系统测量小车的加速度。一、实验目的:1.熟悉DIS实验系统的结构和原理。2.学习用DIS实验系统测定下滑小车的加速度。二、实验原理:DIS实验系统是一种将传感器、数据采集器和计算机组合起来,共同完成对物理量测量的实验装置,它能实时采集数据并进行快速处理,它能显示难以观察的实验过程。它的测量系统框图如下:实验九用DIS实验系统测小车的加46本实验用运动传感器结合计算机获得小车从斜面上下滑时的v-t图,根据,再通过图象求小车的加速度。三、实验器材:小车、1m长的木板、运动传感器、数字采集器、计算机四、实验内容:认识DIS实验系统的组成和部件,应用DIS实验系统测定下滑小车的加速度。计算机研究对象传感器数据采集器本实验用运动传感器结合计算机获得小车从斜面上下滑时的v-t计47五、实验步骤:1.把运动传感器的发射部分固定在小车上,其接收部分固定在平板的右端。平板稍倾斜。用专用导线把运动传感器接收部分、数据采集器和计算机相连。2.开启实验装置电源,运行计算机辅助系统软件,点击屏幕上的实验菜单,选择“从v-t图求加速度”。屏上将出现“位移-时间”坐标。3.从平板一端推一下小车后,单击“起动”,屏上显示运动小车的s-t图。4.单击屏上“v–t”按钮,可得到整段s-t图线所对应的v-t图线。5.单击“选择区域”按钮,选择需要分析的一段v-t图线,屏幕上将显示由软件计算出的对应的加速度。6.多次测量以得出a的平均值。五、实验步骤:48实验十误差和实验数据处理的基础知识一、测量误差的基本知识1.测量与误差(1)测量与单位从计量角度说,测量就是把待测量直接或间接地与另一个选作标准的同类量(即单位)进行比较,从而得到待测量与选作标准的同类量之间的倍数(即数值)关系的实验过程。测量所得到的数值的大小,与所选用的单位有关。因此,在表示某一待测量的测量结果时,必须同时给出数值和单位,两者缺一不可。实验十误差和实验数据处理的基础知识49(2)直接测量和间接测量直接测量:将待测量与预先标定好的仪器、量具直接进行比较,读出其量值的大小。例如用米尺测长度,用天平称质量,用秒表测时间,用电表测电流或电压等。间接测量:如用单摆测重力加速度g,先直接测得摆长l和单摆周期T,然后由公式算出重力加速度,因此g为间接测量量。(3)测量误差在实际测量过程中,由于测量仪器的精度不够,测量原理和方法的不完善,测量者感官能力的限制,所得的测量结果和真值总存在一定的差异。这种测量值与真值之间的差异称为测量误差,若某物理量的测量值为x,真值为A,则测量误差定义为:ε=x-A。上式所定义的测量误差反映了测量值偏离真值的大小和方向,因此又称ε为绝对误差。(2)直接测量和间接测量50由于在实际测量中,往往不能确切知道真值A,而只能求得最接近于真值的估计值,即最佳估计值,通常取多次重复测量的平均值作为最佳值,用表示。因此,实际能求得的误差仅是测量值和最佳估计值之差。绝对误差可以表示某一测量结果的优劣,但在比较不同测量结果时则不适用,需要用相对误差表示。相对误差定义为:相对误差=(绝对误差/测量最佳值)×100%。有时被测量有公认值或理论值,还可以用“百分误差”来表征:百分误差=〔(测量最佳值-公认值)/公认值〕×100%。由于在实际测量中,往往不能确切知道真值A,而只能求得最接近于512.误差的分类根据误差的性质及产生的原因,可将误差分为系统误差、随机误差和粗大误差。(1)系统误差在一定条件下对同一物理量进行多次重复测量时,误差的大小和符号均保持不变;而当条件改变时,误差按某种确定的规律变化(如递增、递减、周期性变化等),则这类误差称为系统误差。系统误差产生的原因:①测量仪器本身的缺陷。②实验理论和方法的不完善。③环境的影响或没有在所规定的条件下使用仪器。④实验者的习惯与偏向引入的系统误差。2.误差的分类52(2)随机误差在同一条件下多次测量同一物理量时,测量值彼此之间总有稍许误差,而且变化不定,并在消除系统误差后仍然如此,这种绝对值和符号随机变化的误差称为随机误差,也称偶然误差。随机误差产生的原因:①实验者本人感觉器官分辨能力的限制。②测量过程中,实验条件和环境因素的微小的、无规则的起伏变化。(3)粗大误差明显地歪曲了测量结果的误差称为粗大误差。它是由于实验者使用仪器的方法不正确,粗心大意读错、记错、算错测量数据或实验条件突变等原因造成的。含有粗大误差的测量值称为坏值或异常值,正确的结果中不应包含有过失错误。在实验测量中要极力避免过失错误,在数据处理中要尽量剔除坏值。(2)随机误差53二、有效数字及其运算规则1.有效数字的定义及基本性质(1)有效数字的定义在使用仪器对被测量进行测量读数时,由于受到仪器的制约,只能读到仪器的最小分度值,然后在最小分度值以下还可再估读一位数字。从仪器刻度读出的最小分度值的整数部分是准确的数字,称为可靠数字;而在最小分度以下估读的末位数字,它具有不确定度,通常称为可疑数字。据此定义:测量结果中所有可靠数字加上末位的可疑数字统称为测量结果的有效数字。(2)有效数字的基本特性①有效数字的位数与仪器的最小分度值有关,也与被测量的大小有关。②有效数字的位数与小数点的位置无关,单位换算时有效数字的位数不应发生变化。二、有效数字及其运算规则542.有效数字的运算规则(1)数值的舍入修约规则——“四舍六入五凑偶”①拟舍弃数字的最左一位数字小于5时,则舍去。②拟舍弃数字的最左一位数字大于5,或者是5而其后跟有并非为0的数字时,则进一。③拟舍弃数字的最左一位数字为5,而右面无数字或皆为0时,若所保留的末位数字为奇数则进一,为偶数或0则舍弃,即“单进双不进”。(2)有效数字运算规则①加减运算不同有效位数的数相加减时,最后结果的欠准数与参与加减诸数中最先出现欠准数位置对齐。②乘除运算不同有效位数的数进行乘除运算后,结果的有效位数一般与参加运算的数中有效位数最少的一个相同。2.有效数字的运算规则55(3)乘方、开方的有效数字运算乘方、开方后结果的有效位数与底数的有效数字的位数相同。(4)三角函数、对数的有效数字运算三角函数的有效数字的位数与角度的有效位数相同,对数尾数的有效位数与真数的有效位数相同。三、实验数据处理的一般方法1.列表法用列表法记录原始数据,优点是简明和条理清楚。容易看出数据递增或递减的变化趋势,也有助于检查和发现实验中的问题。应注意如下的原则:①表格中各栏目所列物理量均应标明其名称和单位。②表格中各物理量的排列应尽量与测量顺序一致。对于有函数关系的数据表,则应按自变量由小到大或由大到小的顺序排列。(3)乘方、开方的有效数字运算56③表格中所列的数据主要是原始数据,但重要的中间计算结果也可列入表中。④如有必要,还应记下测量表格中各量所用的仪器及其规格,以及环境条件,以利对结果复查。2.作图法作图法是将一系列数据之间的关系或变化情况用图线直观地表示出来,是一种最常用的数据处理方法。它可以研究物理量之间的变化规律,找出对应的函数关系求取经验公式。如果图线是依据许多数据点描绘出来的光滑曲线,则作图法有多次测量取其平均的作用。在作图法中,有了图线可以求出实验需要的某些结果,绘出仪器的校准曲线;有了图线可以直接读出没有进行测量的对应于某x的y值;在一定条件下,也可以从图线的延伸部分读到测量范围以外无法测量的点的值;有了图线还可以帮助发现实验中个别的测量错误,并可以通过图线进行系统误差分析。③表格中所列的数据主要是原始数据,但重要的中间计算结果也可列57(1)作图规则及步骤①将数据列表。②选择合适的坐标纸。③画出坐标轴的方向,标明物理量、单位,在坐标轴上标数。④在坐标纸上标点和连线。⑤标注图名。(2)作图法常用的几种应用①由斜率、截距求得实验结果。②由外推求得实验结果。③由内插求得实验结果。④由图线得仪器的校正曲线。(1)作图规则及步骤583.逐差法若一物理量(看作自变量)作等距改变时测得另一物理量(看作函数)一系列的对应值,通常把这一组数据前后对半分成一、二两组,用第二组的第一项减第一组的第一项,用第二组的第二项减第一组的第二项,……即顺序逐项相减,然后取平均值求得结果,这就称为一次逐差法。把一次逐差值再做逐差,然后才计算结果的称为二次逐差法,依次类推。4.线性回归法判断两个物理变量之间是否存在相关关系,并由实验数据求出它们的经验方程,这个过程称为回归分析。线性回归法是以最小二乘原理为基础的一种实验数据处理方法。3.逐差法59实验一弦线上横波传播规律的研究在生活、生产和科学研究领域中驻波现象很普遍,它的应用也比较广泛。青少年学生对驻波现象应有所认识和了解,知道它是由波的干涉所形成。本实验利用驻波原理测量横波的波长,使用SWV-1弦线波振动实验仪,研究弦线上横波的传播规律。一、实验目的:观察驻波现象。学习利用驻波原理测量横波波长的方法。验证弦线上横波的传播规律。了解驻波与生活、生产和科研的联系。实验一弦线上横波传播规律的研究60二、实验原理:沿弦线传播的横波其运动方程和波动方程分别为:(T为张力,μ为线密度)(1)(v为波的传播速度)(2)相比较可得:二、实验原理:(T为张力,μ为线密度)(1)61∵v=f
(f为频率,为波长)
(3)将(3)两边取对数,得:
(4)实验将证明(4)式成立。∵v=f(f为频率,为波长)62三、实验器材:SWV-1弦线波振动实验仪、弦线、砝码盘及砝码。实验仪器示意图:三、实验器材:63四、实验内容:
1.观察驻波现象。2.固定张力T和弦线长度,改变振动频率f,测量波长。作ln-lnf图。3.固定振动频率和弦线长度,改变张力T,测定波长。作ln-lnM图四、实验内容:64五、实验步骤:1、接通电源,打开面板上的电源开关,数码管显示振动源的振动频率。按▲或▼键,改变振动源的振动频率,调节面板上振幅调节旋钮,使振动源有振动输出。左右移动可动滑轮B的位置,在弦线上形成驻波。观察驻波,学习测量波长。2、固定砝码质量不变,改变振动源的频率。每改变一次频率,均要左右移动可动滑轮B的位置,使弦线出现振幅较大而稳定的驻波。记录振动频率、砝码质量、测量弦线波长。3、固定振动源的频率,在砝码盘上添加不同质量的砝码,以改变同一弦线上的张力。每改变一次张力,均要左右移动可动滑轮B的位置,使弦线出现振幅较大而稳定的驻波。记录振动频率、砝码质量,测量弦线波长。五、实验步骤:65实验二用冷却法测定金属的比热容
本实验以铜样品为标准样品,采用冷却法测定铁、铝样品在℃时的比热容。样品温度的变化由热电偶温度计反映。热电偶数字显示测温技术是当前生产实际中常用的测试方法,它比用一般的温度计测温有着测量范围广、计值精度高、可以自动补偿热电偶的非线性因素等优点。一、实验目的:1.了解冷却定律。2.学会用冷却法测量金属的比热容。3.学习把曲线变为直线的一种数据处理方法。实验二用冷却法测定金属的比热容66二、实验原理:将质量为M1的金属样品加热后,放在较低温度的介质中(例如室温的空气),经过对流,样品将逐渐冷却,单位时间内其热量损失应与温度下降速率成正比,于是可得到关系式:
(1)式中表示单位时间内样品因对流而损失的热量,c1为金属样品在温度时的比热容,为金属样品在温度时的温度下降速率。根据冷却定律,样品因对流而损失的热量由下式表示:
(2)式中a1为热交换系数,S1为样品外表面的面积,α为常数(强迫对流时α=1,自然对流时α=5/4),为样品温度,为周围介质的温度。二、实验原理:式中a1为热交换系数,S1为样品外表面的面积67由式(1)和(2)可得(3)对质量为M2比热容为c2的另一种样品,则有同样的表达式
(4)(3)和(4)相除,得
(5)由式(1)和(2)可得68如果两样品的形状与尺寸相同,即S1=S2
;两样品的表面状况也相同,而周围介质(空气)的性质也不变,则有a1=a2。于是,当周围介质温度不变,(即室温度恒定)两样品又处于相同温度时,(5)也可以简化为(6)分别是第一种样品和第二种样品在温度时的冷却速率。如果两样品的形状与尺寸相同,即S1=S2;两样品的表面状况69根据冷却规律,假设金属固体在不太高的温度范围内,比热容随温度变化很小,则(3)式可写成:(7)两边取对数:(8)通过实验,作出()~t冷却曲线,在冷却曲线上作切线,并求出曲线的斜率(如图1),得到各温度的冷却速率。根据冷却规律,假设金属固体在不太高的温度范围内,比热容随温度70图1冷却曲线图2在双对数坐标纸上以为横轴,以为纵轴,作~图(见图2)。图1冷却曲线71由(8)式可知各实验点将连成一直线,直线的斜率为α,截距为lg(a1S1/cM1),将α、a1S1/cM1代入(7)式,可得样品冷却表达式。
如果已知标准金属样品的比热容C1、质量M1;待测样品的质量M2及两样品在温度θ时冷却速率之比,通过(6)式就可以求出待测的金属材料的比热容C2。由(8)式可知各实验点将连成一直线,直线的斜率为α,截距为l72三、实验器材:DH4603冷却法金属比热容测量仪,待测量的金属材料铜、铁和铝。 本实验装置(见上图)由加热仪和测试仪组成。加热仪的加热装置可通过调节手轮自由升降。被测样品安放在样品室内的底座上,测温热电偶放置于被测样品内的小孔中。当加热装置向下移动到底后,对被测样品进行加热;样品需要降温时则将加热装置移上。仪器内设有自动控制限温装置,防止因长时间不切断加热电源而引起温度不断升高。三、实验器材:73四、实验内容:1.用电子天平秤出铜、铁、铝三种金属样品的质量。2.测出铜、铁、铝三种金属样品在100℃时的冷却速率。3.已知100℃时铜的比热容Ccu=0.0940cal/(gK),由式(6)分别求出铁和铝在100℃时的比热容。四、实验内容:74五、实验步骤:1、开机前先连接好加热仪和测试仪,共有加热四芯线和热电偶线两组线。2.选取长度、直径、表面光洁度尽可能相同的铜、铁、铝三种金属样品,用电子天平称出它们的质量,再根据MCu>MFe>MA1这一特点,把它们区别开来。3.将热电偶的冷端置于冰水混合物中。将热电偶端的铜导线与数字表的正端相连,冷端铜导线与数字表的负端相连。4.按铁、铜、铝的次序分别将被测样品安放在样品室内的底座上,测温热电偶放置于被测样品内的小孔中。当加热装置向下移动到底后,对被测样品进行加热。5.当样品加热到150℃时(此时热电势显示约为6.7mV),切断电源移去加热源,样品继续安放在与外界基本隔绝的有机玻璃圆筒内自然冷却(筒口须盖上盖子)。记录样品的冷却速率。具体做法是记录数字电压表上示值约从降到所需的时间(因为数字电压表上的值显示数字是跳跃性的,所以只能取附近的值),从而计算。每一样品应重复测量5次。五、实验步骤:75实验三磁场的描绘
测量磁场的方法很多,常用的有电磁感应法、半导体(霍尔效应)探测法和核磁共振法。本实验采用电磁感应法,应用先进的玻莫合金磁阻传感器作探头,测量圆线圈和亥姆霍兹线圈磁场。与探测线圈、霍尔传感器作测量探头相比,玻莫合金磁阻传感器具有灵敏度高、抗干扰能力强、可靠性高、易于测量等优点,有助于学生深入研究弱磁场和地球磁场等。一、实验目的:1.通过测量和描绘圆线圈轴线上的磁场分布,学习弱磁场的测量方法。2.验证毕奥-萨伐尔定理。证明磁场迭加原理。3.用亥姆霍兹线圈校正和测量磁阻传感器作探头的弱磁特斯拉仪线性度。4.学习测量地磁的水平分量(选做)。实验三磁场的76二、实验原理:1.载流圆线圈的磁场半径为R的圆线圈,通以电流,根据毕奥一沙伐尔定律,可计算出沿圆形电流轴线方向的磁感应强度B。它是一个非均匀磁场,在轴线方向的量值为(1)式(1)中,N是圆线圈的匝数,x为轴线上测量点离圆线圈中心的距离,μ0为真空磁导率()。二、实验原理:(772.亥姆霍兹线圈的磁场一对相同的载流圆线圈彼此平行且共轴,通以同方向电流,当线圈间距d等于线圈半径R时,则两个载流圆线圈的总磁场在轴的中点附近的较大范围内是均匀的。这对线圈称为亥姆霍兹线圈。载流圆线圈及亥姆霍兹线圈的磁场分布见下图。(a)载流圆线圈磁场分布(b)亥姆霍兹线圈磁场分布图1载流圆线圈及亥姆霍兹线圈的磁场分布2.亥姆霍兹线圈的磁场(a)载流圆线圈磁场分布(b)亥78三、实验器材磁阻传感器;圆线圈和亥姆霍兹线圈实验平台(台面上有1厘米的等距离刻线组);高灵敏度三位半数字毫伏表、三位半数字电流表和直流稳流电源(组成在一个仪器箱内)。实验装置简图如图2所示。三、实验器材79四、实验内容:1、测量和描绘单个圆线圈轴线上的磁场分布,验证毕奥-萨伐尔定理。2、测量和描绘亥姆霍兹线圈的磁场分布,证明磁场迭加原理。用亥姆霍兹线圈校正和测量磁阻传感器作探头的弱磁特斯拉仪线性度。3、测量地磁的水平分量(选做)。四、实验内容:80五、实验步骤:1.按图2所示安装仪器。用直尺测量线圈外径到工作台中心线的距离,适当调节,使两线圈的轴心线与工作台中心线重合。按实验要求,调节线圈间距,并使线圈平面与实验工作台垂直。2.磁阻传感器探头插头内缺口向上,插入仪器上插座。然后仪器通电,预热十五分钟。3.测量载流圆线圈a(左线圈)在轴线上的磁感应强度Ba。每移动一格,测量一次Ba,记录数据。4.在亥姆霍兹线圈的轴线上,先测量直流电流通过单个圆线圈a和单个圆线圈b产生的磁感应强度Ba和Bb,然后测量直流电流通过亥姆霍兹线圈产生的磁场Ba+b。5.传感器置于亥姆霍兹线圈轴线中心,改变线圈电流,测量磁感应强度B。用亥姆霍兹线圈校正和测量磁阻传感器作探头的弱磁特斯拉仪线性度。五、实验步骤:81实验四电学元件伏安特性的测量伏特计、安培计法是一种较为普遍的测量电学元件的电阻的方法,虽然精确度不很高,但所用的测量仪器(如伏特计和安培计)却较简单,使用也方便。由于电表的内阻往往对测量结果有影响,所以这种方法常带来明显的系统误差。若改用补偿法来测量电压,则可避免这个缺点。一、实验目的:1.学会正确使用电学基本测量仪器。2.掌握电学元件伏安特性测量的基本方法。3.学会分析伏安法的电表接人误差,正确选择测量电路。实验四电学元件伏安特性的测82二、实验原理:1.两种测量电路的分析在一定温度下,当直流电流通过某一待测电阻时,用电压表测出两端的电压U,同时用电流表测出通过的电流I,根据欧姆定律计算:这种测量电阻的方法即伏安法。若U/I为常量,则该电阻称为线性电阻;若U/I不为常量,则称该电阻为非线性电阻(非线性元件),如二极管等。在实际测量中,由于电流表和电压表各存在内阻和,所以用(1)式计算出的和真实值不一致,而且选用不同的测量电路,其系统误差也不相同。以下是两种测量电路的分析。二、实验原理:这种测量电阻的方法即伏安法。若U/I为常83
电流表内接:如图1(a)所示,实验中电流表显示出流过的电流I,
,但电压表所显示的电压为和上的电压之和,即或。(a)电流表内接(b)电流表外接电流表内接:如图1(a)所示,实验中电流表显示出流过84
2.二极管的伏安特性(非线性电阻)半导体二极管是由P型和N型半导体材料组成的,其核心部分是一个PN结,PN结处在P区和N区的相连处。若电压加在二极管上,P端接高电位,N端接低电位,称为“正向连接”。半导体二极管的结构及符号见图2。二极管以正向连接时,很容易导通,电路中电流比较大。随着正向电压的增加,电流增加,电流的大小并不与电压成正比。即R=U/I公式成立,但R不为常量,且其值变化范围很大。以正向电压U和正向电流I的对应关系作图,称为二极管的正向伏安特性曲线,见图3。同样地,测二极管的正向I—U特性曲线,也要考虑到电流表内接或外接的问题,以尽量减小电表的测量误差。2.二极管的伏安特性(非线性电阻)85三、实验器材:直流稳压电源E、开关K、滑线变阻器(可调电位器Ro)、数字多用表(电流表mA)、数字万用表(电压表V)、待测线性电阻R、待测二极管。四、实验内容:用内接法和外接法分别测电阻R。测二极管的正向伏安特性,作图线。五、实验步骤:1.连接好线路,逐次测量。实验线路如下图所示。每次测量之前,将开关K断开,首先估算并调节电流表、电压表、滑线变阻器Ro所应放置的合适档位。三、实验器材:86
2.测量数据(1)按图4(a)连线,用外接法分别测电阻R1,将实验数据记入表l中。(2)按图4(b)连线,用内接法分别测R1,将实验数据记入表2中。(3)按右图(c)连线,测二极管的正向伏安特性(注意二极管的正负极性)。对于不同型号的二极管,各正向电压、电流的参数不同,应正确确定电压和电流的测量范围,以及电压间隔的选取。将测量数据记人表中。3.以为横坐标,以为纵坐标,在毫米方格纸上作出二极管的正向伏安特性曲线。2.测量数据87实验五测定波璃的折射率当光线以一定的入射角穿过两面平行的玻璃板时,传播方向不变,但是出射光线跟入射光线相比,有一定的侧移。根据这一特点,可用插针法求玻璃的折射率。一、实验目的:1.加深对折射定律的理解。2.学习用插针法测定玻璃的折射率。二、实验原理:根据光的折射定律,求玻璃对空气的折射率。ANO''V1OP1P2iBaba'b'N'rP3P4实验五测定波璃的折射率A88三、实验器材:长方形玻璃砖、白纸、大头针、图钉、直尺、锤子、绘图板、量角器等。四、实验内容:用插针法测定玻璃的折射率,求玻璃对空气的折射率。五、实验步骤:1.用图钉把白纸钉在绘图板上。2.在白纸上画一条直线aa‘作为界面,过aa’上的一点O画出界面的法线NN‘,并画一条线段AO作为入射光线。3.把玻璃砖平放在纸上,使它的长边跟aa'对齐,画出玻璃砖的另一边bb',此后不要再移动玻璃砖的位置。三、实验器材:894.在线段AO上竖直地插上两枚大头针P1、P2。5.透过玻璃砖观察大头针P1、P2的像,调整视线的方向,直到P1的像被P2挡住。再在观察的这一侧插两枚大头针P3、P4,使P3挡住P1、P2,P4挡住P1、P2、P3。记下P3、P4的位置。6.移去大头针和玻璃砖,过P3P4引直线O'B,与bb'交于O'。连接OO'。这样入射角i=∠AON,折射角r=∠O'ON'。7.用量角器量出入射角和折射角,查出它们的正弦值,填入表格。8.用上面的方法,分别求出多组入射角和对应的折射角,查出它们的正弦值,记入表格。9.对表格中的数据进行处理,求出玻璃对空气的折射率n。4.在线段AO上竖直地插上两枚大头针P1、P2。90实验六单摆测量重力加速度要研究周期与摆角的关系,就必须在不同的摆角,甚至在大摆角下进行周期测量。由于空气阻尼的存在,无法精确测得大角度下摆动周期的准确值。采用集成开关型霍耳传感器和电子计时器实现自动计时后,能够在很短的几个周期内准确测得单摆在大角度下的周期,这样就可以忽略空气阻尼对摆角的影响,使研究周期与摆角关系的实验得以顺利进行。在得到周期与摆角的关系后,可以用外推至摆角为零的方法,精确测得摆角极小时的振动周期值,从而更精确地测定重力加速度。一、实验目的:1.验证单摆摆长与周期之间的关系,并求出重力加速度。2.测量摆角与周期之间的关系,作关系图,求出重力加速度。3.学会运用外推法求所需的物理量。实验六单摆测量重力加速度91二、实验原理:1.周期与摆长的关系当摆角θm很小时(小于3°),单摆的振动周期T和摆长L有如下近似关系:或(1)如固定摆长L,测出相应的振动周期T,由(1)式可以求出g。也可以逐次改变摆长L,测量各相应的周期T,再求出T2,最后在坐标纸上作T2-L图。如图是一条直线,说明T2与L成正比关系。求出该直线的斜率k,由可以求出g。二、实验原理:或922.周期与摆角的关系在忽略空气阻力和浮力的情况下,由单摆振动时能量守恒,可以得到质量为m的小球在摆角为θ处动能和势能之和为常量,即:
(2)式中,L为单摆摆长,θ为摆角,g为重力加速度,t为时间,E0为小球的总机械能。因为小球在摆幅为θm处释放,则有E0=mgL(1-cosθm),代入(2)式,解方程得到
(3)2.周期与摆角的关系(293(3)式中T为单摆的振动周期。令k=sin(θm/2),并作变换sin(θ/2)=ksinφ,则有
经过近似计算可得
(4)以往的单摆实验对(4)式只能考虑到一级近似,现在单摆振动周期可以精确测量了,即可用二级近似公式。于是测出不同的θm所对应的二倍周期2T,作出图,并对图线外推,从截距2T得到周期T,就可以进一步得到重力加速度g。(3)式中T为单摆的振动周期。经过近似计算可得94三、实验器材:FD-DB-Ⅱ型单摆实验仪四、实验内容:1.当摆角θm很小时(小于3°),逐次改变摆长L,测量各相应的周期T,在坐标纸上作T2-L图,求出图线的斜率k,由
求出g。2.固定摆长L,测出不同的摆角θm所对应的周期T,作出图,并对图线外推,从截距2T得到周期T,进一步求得重力加速度g。三、实验器材:95五、实验步骤:1.以静止的单摆线为铅垂线,移动米尺上所附的平面镜,使悬点在平面镜上的水平横线处成像。仔细调节,使悬点、横划线、悬点的像三点共线。记下横划线在米尺上的读数,即悬点的位置。2.在平面镜的上方装上传感器,再移动至摆球下方约1.0cm处。在金属小球底部贴上一块小型钕铁硼磁钢,调节摆线的长度,使磁钢产生的磁场能被传感器接收到。调节计时器,预置开关次数(不宜太大,实验中可用10次,即5个周期)。3.将小球拉开一段距离,用水平直尺测量x的距离,应用三角函数计算出摆角θ的大小。4.在摆角θ小于3°条件下,取5组摆长,每一摆长都做5次,测相应的周期T。将所得的数据填入表1中。5.固定摆长,改变摆角(即改变x的距离),取6组摆角(θ小于45°即可)。每组测6次,测相应的周期T。将所得的数据填入表2中。五、实验步骤:96实验七声速的测量(超声)声速是描述声波在媒质中传播快慢的物理量。其测量方法可分为两大类:一类是根据公式,测出声波传播路程s所需要的时间,去求;另一类是利用公式,测量声波的频率和波长去求声速。在本实验中用的是后一种方法。一、实验目的:1.运用振幅极值法(驻波法)测声波在空气中的速度。2.了解电压换能器的功能。3.学习用逐差法处理实验数据。实验七声97二、实验原理:由发射器发生的声波经空气传播到一定距离的接受器,如果接受面与发射面平行,声波即在两面间来回反射形成驻波,当两面之间的距离为半波长的整数倍时,接受器上的声压达到最大值。测出声压最大值的位置L1、L2、L3…相邻两次极大值之间的距离为半波长。如已知声波的频率,由可以求出声波在空气中的速度。三、实验器材:低频信号发生器、数字频率计、压电陶瓷超声换能器一对、游标卡尺、同轴电缆、示波器等。四、实验内容:运用振幅极值法(驻波法)测声波在空气中的速度,并求出误差。二、实验原理:98五、实验步骤:1.连接测试系统。2.在收发超声换能器间隔几厘米时,调整测试系统频率,在示波器上看到接受信号幅度最大。记下此时接受器的位置。3.改变接受器位置,测出相继出现10个接受器信号最大值位置L,从分开和靠拢两次求平均值。用分组逐差法求出波长,并记下信号频率和室温。4.求出声速,求出误差。五、实验步骤:99实验八气垫导轨上的碰撞实验气垫导轨简称气轨,它利用从导轨表面小孔喷出的压缩空气,在导轨和滑块之间形成一层很薄的“气垫”,使滑块漂浮在气垫上。当滑块在气轨上运动时,仅受到很小的空气粘滞性摩擦阻力,这样滑块的运动可近似地认为是无摩擦的运动。本实验运用气垫导轨技术研究一维碰撞运动中的动量和能量问题。一、实验目的:1.验证动量守恒定律。2.了解非完全弹性碰撞与完全非弹性碰撞的特点。实验八气垫导轨上的碰撞实验100二、实验原理:当两滑块在水平的导轨上沿直线作对心碰撞时,根据动量守恒定律,两滑块的总动量在碰撞前后保持不变。即
(1)式(1)中为滑块1的质量,和是滑块1碰撞前和碰撞后的动量。为滑块2的质量,和是滑块2碰撞前和碰撞后的动量。两滑块碰撞后的相对速度与碰撞前相对速度的比值称为恢复系数,用e表示,即(2)当e=1时,两滑块的碰撞为完全弹性碰撞;当e=0时,两滑块的碰撞为完全非弹性碰撞;当0<e<1时,两滑块的碰撞为非完全弹性碰撞。二、实验原理:1011.非完全弹性碰撞取滑块1的质量大于滑块2的质量,先使滑块2静止,然后推动滑块1去撞滑块2。则有碰撞前后动能的变化为
(3)(4)2.完全非弹性碰撞滑块2先静止,然后推动滑块1去撞滑块2,碰撞后两滑块粘在一起,以同一速度运动。则有
(5)碰撞前后动能的变化为
(6)1.非完全弹性碰撞碰撞前后动能的变化为102三、实验器材:
气垫导轨、滑块、光电门、数字毫秒计、游标卡尺、尼龙粘胶带或橡皮泥。四、实验内容:研究非完全弹性碰撞与完全非弹性碰撞的性质,验证动量守恒定律。五、实验步骤:1.调平气轨,检查滑块碰撞弹簧,保证对心碰撞。2.进行非完全弹性碰撞。适当安置光电门A、B的位置,使能顺序测出3个时间t1A、t2B、t1B,并在可能条件下使A、B距离小些。每次碰撞时,需使=0,也不要太大。三、实验器材:1033.进行完全非弹性碰撞。两滑块的相对碰撞面上加上尼龙胶带,使=0,进行碰撞。4.计算结果和分析。两类碰撞,碰撞后、前动量之比。两类碰撞,碰撞前后动能变化。非完全弹性碰撞时的恢复系数。对实验结果作分析与评价。六、实验数据:1.非完全弹性碰撞==d1=d2=t10/st1/st2/sV10(m/s)V1(m/s)V2(m/s)c△Ek/-10-7JeC为碰撞后动量和与碰撞前动量和之比。2.完全非弹性碰撞==d1=d2=t10/st2/sV10(m/s)V2(m/s)c△Ek/-10-7JC为碰撞后动量和与碰撞前动量和之比。3.进行完全非弹性碰撞。104实验九用DIS实验系统测小车的加速度现代信息技术给物理量的测量带来了革命性的变化,不但简单方便,而且测量精度高,误差小。利用数字化、信息化技术进行实验研究,简称为DIS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融智能投顾策略分析
- 2024年度马戏团演出衍生品开发与销售合同
- 2024年度商品代理销售合同
- 2024年度电动车租赁加盟合同
- 2024年度产品研发与委托加工合同
- 跨界合作案例分析
- 2024年度酒店洁具供应合同
- 《应用数值分析》课件数值分析2.3牛顿插值法
- 精子质量与生殖健康关联分析
- 不同区域在区块链行业中的竞争格局探讨
- 九年级人自然社会教案
- 战略合作框架协议(国企)
- 【图文】环保气体绝缘环网柜
- 项目工程管理流程图
- 全国大学生职业生涯规划大赛获奖作品鉴赏
- 汽车电子技术毕业论文
- C#编码规范(中文)
- 数字信号处理习题集大题及答案课件
- HXN5型机车常见故障处理指导书
- 蔬菜病害的识别与防治
- 浅谈高中英语教学中学生创造性思维的培养
评论
0/150
提交评论