河南省九师.商周联盟2022年高一数学第一学期期末达标检测模拟试题含解析_第1页
河南省九师.商周联盟2022年高一数学第一学期期末达标检测模拟试题含解析_第2页
河南省九师.商周联盟2022年高一数学第一学期期末达标检测模拟试题含解析_第3页
河南省九师.商周联盟2022年高一数学第一学期期末达标检测模拟试题含解析_第4页
河南省九师.商周联盟2022年高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.2.已知,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若,则()A B.C. D.4.函数的单调递减区间是A. B.C. D.5.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=,则球O的表面积是()A. B.C. D.6.下列函数中,既是偶函数又在区间上单调递增的函数是A. B.C. D.7.设集合,.若,则()A. B.C. D.8.下列函数中在定义域上为减函数的是()A. B.C. D.9.设,,,则a,b,c的大小关系是()A. B.C. D.10.下列函数中,在R上为增函数的是()A.y=2-xC.y=2x11.如图中的图象所表示的函数的解析式为()A.BC.D.12.下列函数中,既是偶函数,又在区间上单调递增的函数是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取人数为______.14.已知函数满足下列四个条件中的三个:①函数是奇函数;②函数在区间上单调递增;③;④在y轴右侧函数的图象位于直线上方,写出一个符合要求的函数________________________.15.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.16.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设函数(且,)(1)若是定义在R上的偶函数,求实数k的值;(2)若,对任意的,不等式恒成立,求实数a的取值范围18.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.19.计算下列各式的值(1);(2)已知,求20.已知(1)化简;(2)若,求的值21.设函数是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若,且在上的最小值为2,求实数k的取值范围.22.已知函数,(1)求的解集;(2)当时,若方程有三个不同的实数解,求实数k的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.2、A【解析】说明由可得得到,通过特例说明无法从得到,从而得到是的充分不必要条件.【详解】由,可得,由,即,,解得或.于是,由能推出,反之不成立.所以是充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.3、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论4、B【解析】是增函数,只要求在定义域内的减区间即可【详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【点睛】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质5、A【解析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC,SA=,AB⊥BC且AB=BC=1,∴AC=∴SA⊥AC,SB⊥BC,SC=∴球O的半径R==1∴球O的表面积S=4πR2=4π故选A点睛:本题考查球的表面积的求法,合理地作出图形,确定球心,求出球半径是解题的关键6、D【解析】选项A为偶函数,但在区间(0,+∞)上单调递减;选项B,y=x3为奇函数;选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性;选项D满足题意【详解】选项A,y=ln为偶函数,但在区间(0,+∞)上单调递减,故错误;选项B,y=x3为奇函数,故错误;选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性,故错误;选项D,y=2|x|为偶函数,当x>0时,解析式可化为y=2x,显然满足在区间(0,+∞)上单调递增,故正确故选D【点睛】本题考查函数的奇偶性和单调性,属于基础题7、C【解析】∵集合,,∴是方程的解,即∴∴,故选C8、C【解析】根据基本初等函数的单调性逐一判断各个选项即可得出答案.【详解】对于A,由函数,定义域为,且在上递增,故A不符题意;对于B,由函数,定义域为,且在上递增,故B不符题意;对于C,由函数,定义域为,且在上递减,故C符合题意;对于D,由函数,定义域为,且在上递增,故D不符题意.故选:C9、C【解析】根据幂函数和指数函数的单调性比较判断【详解】∵,,∴.故选:C10、C【解析】对于A,y=2-x=12x,在R上是减函数;对于B,y=x2在-∞,0上是减函数,在0,+∞上是增函数;对于C,当【详解】解:对于A,y=2-x=12对于B,y=x2在-∞,0对于C,当x≥0时,y=2x是增函数,当x<0时,y=x是增函数,所以函数fx对于D,y=lgx的定义域是0,+∞故选:C.11、B【解析】分段求解:分别把0≤x≤1及1≤x≤2时解析式求出即可【详解】当0≤x≤1时,设f(x)=kx,由图象过点(1,),得k=,所以此时f(x)=x;当1≤x≤2时,设f(x)=mx+n,由图象过点(1,),(2,0),得,解得所以此时f(x)=.函数表达式可转化为:y=|x-1|(0≤x≤2)故答案为B【点睛】本题考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得12、D【解析】根据常见函数的单调性和奇偶性可直接判断出答案.【详解】是奇函数,不满足题意;的定义域为,是非奇非偶函数,不满足题意;是非奇非偶函数,不满足题意;是偶函数,且在区间上单调递增,满足题意;故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由题意求得样本中抽取的高三的人数为人进而求得样本中高三年级参加登山的人,即可求解.【详解】由题意,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,所以样本中抽取的高三的人数为人,又因为全校参加登山的人数占总人数的,所以样本中高三年级参加登山的人数为,所以样本中高三年级参加跑步的人数为人.故答案为:.14、【解析】满足①②④的一个函数为,根据奇偶性以及单调性,结合反比例函数的性质证明①②④.【详解】满足①②④对于①,函数的定义域为关于原点对称,且,即为奇函数;对于②,任取,且因为,所以,即函数在区间上单调递增;对于④,令,当时,,即在y轴右侧函数的图象位于直线上方故答案为:【点睛】关键点睛:解决本题的关键在于利用定义证明奇偶性以及单调性.15、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:16、【解析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)1(2)【解析】(1)由函数奇偶性列出等量关系,求出实数k的值;(2)对原式进行化简,得到对恒成立,分和两种情况分类讨论,求出实数a的取值范围.【小问1详解】由可得,即对恒成立,可解得:【小问2详解】当时,有由,即有,且故有对恒成立,①若,则显然成立②若,则函数在上单调递增故有,解得:;综上:实数a的取值范围为18、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得19、(1)(2)1【解析】(1)根据对数和指数幂的运算性质计算即可得出答案.(2)利用诱导公式化简目标式,然后分子分母同时除以,代入即可得出答案.【小问1详解】原式=;【小问2详解】原式=.20、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故值为.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由奇函数即可解得,需要检验;(Ⅱ)由得,进而得,令,得,结合的范围求解即可.试题解析:(Ⅰ)经检验成立.(Ⅱ).,设设..当时,成立.当时,成立.当时,不成立,舍去.综上所述,实数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论