




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.“函数在区间I上严格单调”是“函数在I上有反函数”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件2.若函数为上的奇函数,则实数的值为()A. B.C.1 D.23.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是()A. B.C. D.4.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是A.1 B.C. D.5.若函数在区间上为减函数,在区间上为增函数,则A.3 B.2C. D.6.已知定义域为的函数满足,且,若,则()A. B.C. D.7.若点在角的终边上,则的值为A. B.C. D.8.已知直线,若,则的值为()A.8 B.2C. D.-29.已知是偶函数,且在上是减函数,又,则的解集为()A. B.C. D.10.给定四个函数:①;②();③;④.其中是奇函数的有()A.1个 B.2个C.3个 D.4个11.下列关系中,正确的是()A. B.C. D.12.把表示成,的形式,则的值可以是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.若“”为假命题,则实数m最小值为___________.14.如图,扇形的面积是,它的周长是,则弦的长为___________.15.已知a=0.32,b=413,c=log132,则a16.若,则a的取值范围是___________三、解答题(本大题共6小题,共70分)17.已知平面直角坐标系中,,,Ⅰ若三点共线,求实数的值;Ⅱ若,求实数的值;Ⅲ若是锐角,求实数的取值范围18.计算求值:(1)计算:;(2).19.已知全集,集合,.(1)若,求;(2)若,求实数的取值范围.20.已知.(Ⅰ)若,求的值;(Ⅱ)若为第三象限角,且,求的值.21.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)若是的中点,求异面直线与所成角的正切值(2)在棱上是否存在一点,使侧面,若存在,试确定点的位置;若不存在,说明理由22.某校对100名高一学生的某次数学测试成绩进行统计,分成五组,得到如图所示频率分布直方图.(1)求图中a值;(2)估计该校高一学生这次数学成绩的众数和平均数;(3)估计该校高一学生这次数学成绩的75%分位数.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】“函数在区间上单调”“函数在上有反函数”,反之不成立.即可判断出结论【详解】解:“函数在区间上严格单调”“函数在上有反函数”,下面给出证明:若“函数在区间上严格单调”,设函数在区间上的值域为,任取,如果在中存在两个或多于两个的值与之对应,设其中的某两个为,且,即,但因为,所以(或)由函数在区间上单调知:,(或),这与矛盾.因此在中有唯一的值与之对应.由反函数的定义知:函数在区间上存在反函数反之“函数在上有反函数”则不一定有“函数在区间上单调”,例如:函数,就存在反函数:易知函数在区间上并不单调综上,“函数在区间上严格单调”是“函数在上有反函数”的充分不必要条件.故选:A2、A【解析】根据奇函数的性质,当定义域中能取到零时,有,可求得答案.【详解】函数为上的奇函数,故,得,当时,满足,即此时为奇函数,故,故选:A3、C【解析】根据三角函数的奇偶性,即可得出φ的值【详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所以φ的值可以是.故选C.【点睛】本题考查了三角函数的图象与性质的应用问题,属于基础题4、D【解析】根据题意,函数f(x)是定义在R上的偶函数,则=,又由f(x)区间(﹣∞,0)上单调递增,则f(x)在(0,+∞)上递减,则f(32a﹣1)⇔f(32a﹣1)⇔32a﹣1<⇔32a﹣1,则有2a﹣1,解可得a,即的最大值是,故选:D.5、C【解析】由题意得当时,函数取得最小值,∴,∴又由条件得函数的周期,解得,∴.选C6、A【解析】根据,,得到求解.【详解】因为,,所以,所以,所以,所以,,故选:A7、A【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.8、D【解析】根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.9、B【解析】根据题意推得函数在上是增函数,结合,确定函数值的正负情况,进而求得答案.【详解】是偶函数,且在上是减函数,又,则,且在上是增函数,故时,,时,,故的解集是,故选:B.10、B【解析】首先求出函数的定义域,再由函数的奇偶性定义即可求解.【详解】①函数的定义域为,且,,则函数是奇函数;②函数的定义域关于原点不对称,则函数()为非奇非偶函数;③函数的定义域为,,则函数不是奇函数;④函数的定义域为,,则函数是奇函数.故选:B11、C【解析】根据自然数集、正整数集、整数集以及有理数集的含义判断数与集合的关系.【详解】对于A,,所以A错误;对于B,不是整数,所以,所以B错误;对于C,,所以C正确;对于D,因为不含任何元素,则,所以D错误.故选:C.12、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B二、填空题(本大题共4小题,共20分)13、【解析】写出该命题的否定命题,根据否定命题求出的取值范围即可【详解】解:命题“,有”是假命题,它否定命题是“,有”,是真命题,即,恒成立,所以,因为,在上单调递减,上单调递增,又,,所以所以,的最小值为,故答案为:14、【解析】由扇形弧长、面积公式列方程可得,再由平面几何的知识即可得解.【详解】设扇形的圆心角为,半径为,则由题意,解得,则由垂径定理可得.故答案为:.15、a>b>c【解析】根据指数函数与对数函数单调性直接判断即可.【详解】由已知得a=0.32<b=413所以a>b>c,故答案为:a>b>c.16、【解析】先通过的大小确定的单调性,再利用单调性解不等式即可【详解】解:且,,得,又在定义域上单调递减,,,解得故答案为:【点睛】方法点睛:在解决与对数函数相关的解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件三、解答题(本大题共6小题,共70分)17、(Ⅰ)-2;(Ⅱ);(Ⅲ),且【解析】Ⅰ根据三点共线,即可得出,并求出,从而得出,求出;Ⅱ根据即可得出,进行数量积的坐标运算即可求出的值;Ⅲ根据是锐角即可得出,并且不共线,可求出,从而得出,且,解出的范围即可【详解】Ⅰ,B,P三点共线;;;;;Ⅱ;;;Ⅲ若是锐角,则,且不共线;;,且;解得,且;实数的取值范围为,且【点睛】本题主要考查向量平行时的坐标关系,向量平行的定义,以及向量垂直的充要条件,向量数量积的坐标运算,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.18、(1)102(2)【解析】根据指数幂运算律和对数运算律,计算即得解【小问1详解】【小问2详解】19、(1);(2)或.【解析】(1)先求得集合A,当时,求得集合B,根据交集、补集运算的概念,即可得答案.(2)根据题意,可得,根据,可得或,即可得答案【详解】(1),当时,所以;(2)因为,所以,又因为,所以或,解得或.20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由诱导公式化简得,代入即可得解;(Ⅱ)由诱导公式可得,再由同角三角函数的平方关系可得,代入即可得解.【详解】(Ⅰ)由于,又,所以.(Ⅱ)因为,所以.又因为第三象限角,所以,所以.21、(1);(2)为四等分点(靠近点A);答案见解析【解析】(1)取中点,连,,则可得为二面角的平面角,为侧棱与底面所成的角,连接,则,从而可得或其补角为异面直线与所成的角,进而可求得答案;(2)延长交于,取中点,连、,由线面垂直的判定可得平面,则平面平面,再由线面垂直的判定可得平面,取的中点,可证得四边形为平行四边形,所以,从而可得侧面【详解】解:(1)取中点,连,,因为正四棱锥中,为底面正方形的中心,所以面,则为二面角的平面角,为侧棱与底面所成的角,所以,连接,则,或其补角为异面直线与所成的角,因为,,,所以平面平面,所以,(2)延长交于,取中点,连、因为,,,故平面,因平面,故平面平面,又,,故为等边三角形,所以,由平面,故,因为,所以平面,取的中点,,四边形为平行四边形,所以,平面即为AD的四等分点(靠近点A)22、(1)(2)众数为,平均数为(3)【解析】(1)由频率分布直方图的性质,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私募股权投资概述基础知识与市场趋势
- 科技教育中的网络社交行为与信息传播
- 电梯合同范本
- 围墙栏杆合同范本
- 科技引领未来智能化的电影节活动策划
- 科技创新企业分析与实践引领教育领域变革
- 2025至2030年中国草莓专用型冲施肥数据监测研究报告
- 2025至2030年中国船用柴油机海水泵数据监测研究报告
- 2025至2030年中国腌制蔬菜数据监测研究报告
- 撤销押金合同范本
- 大数据安全与隐私保护考核试卷
- 有效喝酒免责协议书(2篇)
- 《高血脂相关知识》课件
- DB31-T 255-2020 集中式空调(中央空调)系统节能运行和管理技术要求
- 统编版语文六年级下册3《古诗三首》课件
- 广东清远人文介绍
- 丰田的全面质量管理
- 严重精神障碍患者管理培训课件
- 2024甘肃路桥建设集团招聘专业技术人员199人管理单位遴选500模拟题附带答案详解
- 中建混凝土工程专项施工方案
- 《黄金基础知识培训》课件
评论
0/150
提交评论