版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.2.已知,且α是第四象限角,那么的值是()A. B.-C.± D.3.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④4.若,,,则a,b,c之间的大小关系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c5.等于()A.2 B.12C. D.36.已知函数是定义域为的奇函数,且满足,当时,,则A.4 B.2C.-2 D.-47.下列函数中,最小正周期为的奇函数是()A. B.C. D.8.已知,,,则的大小关系为A B.C. D.9.若函数在单调递增,则实数a的取值范围为()A. B.C. D.10.已知函数在[2,8]上单调递减,则k的取值范围是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)12.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________13.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.14.已知且,函数的图像恒过定点,若在幂函数的图像上,则__________15.化简:=____________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本x35917…年利润y1234…给出以下3个函数模型:①;②y=abx(a≠0,b>0,且b≠1);③y=loga(x+b)(a>0,且a≠1)(1)选择一个恰当函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型17.计算下列各式:(1)(式中字母均为正数);(2).18.已知不等式的解集为A,不等式的解集为B.(1)求A∩B;(2)若不等式的解集为A∩B,求的值19.已知函数f(x)=m(1)若m=1,求fx(2)若方程fx=0有两个实数根x1,x2,且x20.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-1.(1)求f(3)+f(-1);(2)求f(x)的解析式.21.已知函数,.求:(1)求函数在上的单调递减区间(2)画出函数在上的图象;
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.2、B【解析】由诱导公式对已知式子和所求式子进行化简即可求解.【详解】根据诱导公式:,所以,,故.故选:B【点睛】诱导公式的记忆方法:奇变偶不变,符号看象限.3、D【解析】对每个函【解析】判断奇偶性及单调性即可.【详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D4、C【解析】利用指数函数与对数函数的单调性即可得出【详解】∵a=22.5>1,<0,,∴a>c>b,故选C【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题5、C【解析】利用对数的运算法则即可得出【详解】原式=故选C.【点睛】本题考查了对数的运算法则,属于基础题6、B【解析】先利用周期性将转化为,再利用奇函数的性质将转化成,然后利用时的函数表达式即可求值.【详解】由可知,为周期函数,周期为,所以,又因为为奇函数,有,因为,所以,答案为B.【点睛】主要考查函数的周期性,奇偶性的应用,属于中档题.7、C【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.8、A【解析】利用对数的性质,比较a,b的大小,将b,c与1进行比较,即可得出答案【详解】令,结合对数函数性质,单调递减,,,.【点睛】本道题考查了对数、指数比较大小问题,结合相应性质,即可得出答案9、D【解析】根据给定条件利用对数型复合函数单调性列式求解作答.【详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,,解得,所以实数a的取值范围为.故选:D10、C【解析】利用二次函数的单调性可得答案.【详解】因为函数的对称轴为所以要使函数在[2,8]上单调递减,则有,即故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.12、【解析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式:故答案为.13、6【解析】直接利用f(x)的奇偶性和周期性求解.【详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点14、【解析】由题意得15、【解析】利用三角函数的平方关系式,化简求解即可【详解】===又,所以,所以=,故填:【点睛】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)可用③来描述x,y之间的关系,y=log2(x-1);(2)该企业要考虑转型.【解析】(1)把(3,1),(5,2)分别代入三个函数中,求出函数解析式,然后再把x=9代入所求的解析式中,若y=3,则选择此模型;(2)由(1)可知函数模型为y=log2(x-1),令log2(x-1)>6,则x>65,再由与比较,可作出判断.【详解】(1)由表格中的数据可知,年利润y是随着投资成本x的递增而递增,而①是单调递减,所以不符合题意将(3,1),(5,2)代入y=abx(a≠0,b>0,且b≠1),得解得∴.当时,,不符合题意;将(3,1),(5,2)代入y=loga(x+b)(a>0,且a≠1),得解得∴y=log2(x-1)当x=9时,y=log28=3;当x=17时,y=log216=4.故可用③来描述x,y之间的关系.(也可通过画散点图或不同增长方式选择)(2)令log2(x-1)≥6,则x≥65.∵年利润<10%,∴该企业要考虑转型17、(1);(2).【解析】(1)根据给定条件利用指数运算法则化简作答.(2)根据给定条件,利用对数换底公式及对数运算性质计算作答.【小问1详解】依题意,.【小问2详解】.18、(1)A∩B={x|-1<x<2};(2).【解析】(1)将集合A,B进行化简,再根据集合的交集运算即可求得结果;(2)由题意知-1,2为方程的两根,代入方程联立方程组,即可解得结果.试题解析:解:(1)A={x|-1<x<3},B={x|-3<x<2},∴(2)-1,2为方程x2+ax+b=0的两根∴∴.考点:集合的运算;方程与不等式的综合应用.19、(1)x(2)mm<0或m>【解析】(1)根据题意,解不等式x2(2)由题知m≠0Δ=16m2【小问1详解】解:当m=1时,f(x)=x所以f(x)=x2+4x+3=所以fx≤0的解集为【小问2详解】解:因为方程fx=0有两个实数根x1所以m≠0Δ=16m2-12m≥0所以x1所以x12+x2综上,m的取值范围为mm<0或m>20、(1)6(2)f(x)=【解析】(1)可以直接求,利用为奇函数,求得,所以只需要求出就可以了,再求出;(2)由于已知的解析式,所以只需要求出时的解析式即可,由奇函数的性质求出解析式试题解析:(1)∵f(x)是奇函数,∴f(3)+f(-1)=f(3)-f(1)=23-1-2+1=6.(2)设x<0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店铺租赁(出租)意向协议书
- 2025年度高端摩托车租赁及保养服务合同2篇
- 2025版个人入股合作协议书:互联网公司股权分配合同4篇
- 2025年度个人消费分期付款合同标准7篇
- 2025-2030全球石墨氮化碳行业调研及趋势分析报告
- 2025-2030全球封离型CO2激光器冷水机行业调研及趋势分析报告
- 2025年全球及中国鼻炎光疗仪行业头部企业市场占有率及排名调研报告
- 2025年全球及中国常压等离子体装置行业头部企业市场占有率及排名调研报告
- 2025年度国际货运代理及物流服务合同
- 商家联盟协议书
- 江苏省苏州市2024-2025学年高三上学期1月期末生物试题(有答案)
- 销售与销售目标管理制度
- 人教版(2025新版)七年级下册英语:寒假课内预习重点知识默写练习
- 2024年食品行业员工劳动合同标准文本
- 2025年第一次工地开工会议主要议程开工大吉模板
- 糖尿病高渗昏迷指南
- 全屋整装售后保修合同模板
- 壁垒加筑未来可期:2024年短保面包行业白皮书
- 高中生物学科学推理能力测试
- GB/T 44423-2024近红外脑功能康复评估设备通用要求
- 2024-2030年中国减肥行业市场发展分析及发展趋势与投资研究报告
评论
0/150
提交评论