版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教新课标
14.3因式分解
14.3.2完全平方公式(2)人教新课标14.3因式分解1一、新课引入试计算:9992+1998+12×999×1=(999+1)2
=106此处运用了什么公式?完全平方公式逆用就像平方差公式一样,完全平方公式也可以逆用,从而进行一些简便计算与因式分解。即:一、新课引入试计算:9992+19982完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。二、完全平方式完全平方式的特点:二、完全平方式3现在我们把这个公式反过来很显然,我们可以运用以上这个公式来分解因式了,我们把它称为“完全平方公式”现在我们把这个公式反过来很显然,我们可以运用以上这个公式来分4我们把以上两个式子叫做完全平方式“头”平方,“尾”平方,
“头”“尾”两倍中间放.我们把以上两个式子叫做完全平方式“头”平方,“尾”平方51、回答:下列各式是不是完全平方式是是是否是否1、回答:下列各式是不是完全平方式是是是否是否6多项式是否是完全平方式a、b各表示什么表示为:表示为或形式2.填写下表:是是不是是不是不是a表示:xb表示:3a表示:2yb表示:1a表示:2x+yb表示:3多项式是否是完全平方式a、b各表示什么表示为:73、请补上一项,使下列多项式成为完全平方式3、请补上一项,使下列多项式成为完全平方式8例题:把下列式子分解因式4x2+12xy+9y2=(首±尾)2三、新知识或新方法运用例题:把下列式子分解因式4x2+12xy+9y2=(首±尾)9·例5分解因式:(1)16x2+24x+9分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32a22abb2+·+解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2.三、新知识或新方法运用·例5分解因式:(1)16x2+24x+9分析:在(1)10例5
分解因式:(2)–x2+4xy–4y2.解:(2)–x2+4xy-4y2
=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2三、新知识或新方法运用例5分解因式:(2)–x2+4xy–4y2.解:(211例6:分解因式:(1)3ax2+6axy+3ay2;
(2)(a+b)2-12(a+b)+36.分析:在(1)中有公因式3a,应先提出公因式,再进一步分解。解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.三、新知识或新方法运用例6:分解因式:(1)3ax2+6axy+3ay2121:如何用符号表示完全平方公式?a2+2ab+b2=(a+b)2,a2-2ab+b2(a-b)2.2:完全平方公式的结构特点是什么?四、小结完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。1:如何用符号表示完全平方公式?a2+2ab+b2=(a+b13
练习P1191.下列多项式是不是完全平方式?为什么?(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1;(4)a2+ab+b2.练习P119142.分解因式:(p119)(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2.2.分解因式:(p119)15思考题:1、多项式:(x+y)2-2(x2-y2)+(x-y)2能用完全平方公式分解吗?2、在括号内补上一项,使多项式成为完全平方式:X4+4x2+()思考题:162.()x6
4x3
-4x3
4
=(x+y)2-2(x+y)(x-y)+(x-y)2
=(x+y-x+y)2
=(2y)4
=4y2
1.(x+y)2-2(x2-y2)+(x-y)21—162.()x6
4x3
-4x3
4=(x+y)2-217课本P:119
习题14.3第3、9题。五、作业课本P:119习题14.3五、作业18再见再见19人教新课标
14.3因式分解
14.3.2完全平方公式(2)人教新课标14.3因式分解20一、新课引入试计算:9992+1998+12×999×1=(999+1)2
=106此处运用了什么公式?完全平方公式逆用就像平方差公式一样,完全平方公式也可以逆用,从而进行一些简便计算与因式分解。即:一、新课引入试计算:9992+199821完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。二、完全平方式完全平方式的特点:二、完全平方式22现在我们把这个公式反过来很显然,我们可以运用以上这个公式来分解因式了,我们把它称为“完全平方公式”现在我们把这个公式反过来很显然,我们可以运用以上这个公式来分23我们把以上两个式子叫做完全平方式“头”平方,“尾”平方,
“头”“尾”两倍中间放.我们把以上两个式子叫做完全平方式“头”平方,“尾”平方241、回答:下列各式是不是完全平方式是是是否是否1、回答:下列各式是不是完全平方式是是是否是否25多项式是否是完全平方式a、b各表示什么表示为:表示为或形式2.填写下表:是是不是是不是不是a表示:xb表示:3a表示:2yb表示:1a表示:2x+yb表示:3多项式是否是完全平方式a、b各表示什么表示为:263、请补上一项,使下列多项式成为完全平方式3、请补上一项,使下列多项式成为完全平方式27例题:把下列式子分解因式4x2+12xy+9y2=(首±尾)2三、新知识或新方法运用例题:把下列式子分解因式4x2+12xy+9y2=(首±尾)28·例5分解因式:(1)16x2+24x+9分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32a22abb2+·+解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2.三、新知识或新方法运用·例5分解因式:(1)16x2+24x+9分析:在(1)29例5
分解因式:(2)–x2+4xy–4y2.解:(2)–x2+4xy-4y2
=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2三、新知识或新方法运用例5分解因式:(2)–x2+4xy–4y2.解:(230例6:分解因式:(1)3ax2+6axy+3ay2;
(2)(a+b)2-12(a+b)+36.分析:在(1)中有公因式3a,应先提出公因式,再进一步分解。解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.三、新知识或新方法运用例6:分解因式:(1)3ax2+6axy+3ay2311:如何用符号表示完全平方公式?a2+2ab+b2=(a+b)2,a2-2ab+b2(a-b)2.2:完全平方公式的结构特点是什么?四、小结完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。1:如何用符号表示完全平方公式?a2+2ab+b2=(a+b32
练习P1191.下列多项式是不是完全平方式?为什么?(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1;(4)a2+ab+b2.练习P119332.分解因式:(p119)(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2.2.分解因式:(p119)34思考题:1、多项式:(x+y)2-2(x2-y2)+(x-y)2能用完全平方公式分解吗?2、在括号内补上一项,使多项式成为完全平方式:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年日语外贸业务员劳动协议
- 2024年电气工程服务协议详细模板
- 2023-2024学年中原名校高考数学试题仿真卷:数学试题试卷
- 2024年创意动画广告制作协议示例
- 2024专业护士聘用协议细则
- 2024年度党组织结对共建协议
- DB11∕T 1721-2020 水生生物调查技术规范
- 2024精制陶瓷购销协议样本
- 二手车销售协议范本(个性化)
- 2024年煤矿作业自卸运输车销售协议
- 能源岗位招聘面试题与参考回答2024年
- 团队协作课件教学课件
- 相对湿度计算公式
- 7.1促进民族团结 (课件) 2024-2025学年九年级道德与法治上册 (统编版)
- 2023-2024学年四年级上册信息技术第一单元第1课《身边的数据》教学设计浙教版2023
- 福建省龙海市龙文区2022-2023学年五年级上学期期末英语试题
- 防范工贸行业典型事故三十条措施解读
- 8安全记心上-交通安全(教学设计)部编版道德与法治三年级上册
- 提炼与抽象-顺畅沟通世界 课件-2023-2024学年高中美术人教版(2019)选择性必修4 设计
- 国开2024年秋季《形势与政策》专题测验1-5答案
- 2024年高考英语时事热点:航天主题(附答案解析)
评论
0/150
提交评论