版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若是完全平方式,与的乘积中不含的一次项,则的值为A.-4 B.16 C.4或16 D.-4或-162.如图,在中,,按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交于点;②分别以点为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为()A.110° B.115° C.65° D.100°3.如图,将甲图中的阴影部分无重叠、无缝隙得拼成乙图,根据两个图形中阴影部面积关系得到的等式是()A.a2+b2=(a+b)(a-b) B.a2+2ab+b2=(a+b)2C.a2-2ab+b2=(a-b)2 D.(a+b)2-(a-b)2=4ab4.下列运算错误的是()A. B. C. D.5.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.6.把(a2+1)2-4a2分解因式得()A.(a2+1-4a)2 B.(a2+1+2a)(a2+1-2a)C.(a+1)2(a-1)2 D.(a2-1)27.如图,在中,高相交于点,若,则()A. B. C. D.8.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=12,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则BQ+QP的最小值是()A.4 B.5 C.6 D.79.已知多项式可以写成两个因式的积,又已知其中一个因式为,那么另一个因式为()A. B. C. D.10.如图,中,,,,动点从点出发沿射线以2的速度运动,设运动时间为,当为等腰三角形时,的值为()A.或 B.或12或4 C.或或12 D.或12或4二、填空题(每小题3分,共24分)11.若分式的值为0,则的值为____________.12.如图,长方形两边长,两顶点分别在轴的正半轴和轴的正半轴上运动,则顶点到原点的距离最大值是__________.13.已知:如图,点在同一直线上,,,则______.14.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为__________________.15.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______16.已知,,,…,若(,均为实数),则根据以上规律的值为__________.17.如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组>>-2的解集是_________18.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写_________.三、解答题(共66分)19.(10分)象山红美人柑橘是我省农科院研制的优质品种,宁波市某种植基地2017年种植“象山红美人”100亩,到2019年“象山红美人”的种植面积达到196亩.(1)求该基地这两年“象山红美人”种植面积的平均增长率;(2)市场调查发现,当“象山红美人”的售价为45元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“象山红美人”的平均成本价为33元/千克,若使销售“象山红美人”每天获利3150元,则售价应降低多少元?20.(6分)在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.21.(6分)先化简代数式,再从中选一个恰当的整数作为的值代入求值.22.(8分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.23.(8分)如图,已知AB⊥BC,EC⊥BC,ED⊥AC且交AC于F,BC=CE,则AC与ED相等吗?说明你的理由.24.(8分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?25.(10分)如图,在△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)(2)求S△ADC:S△ADB的值.26.(10分)如图,点,过点做直线平行于轴,点关于直线对称点为.(1)求点的坐标;(2)点在直线上,且位于轴的上方,将沿直线翻折得到,若点恰好落在直线上,求点的坐标和直线的解析式;(3)设点在直线上,点在直线上,当为等边三角形时,求点的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】利用完全平方公式,以及多项式乘以多项式法则确定出m与n的值,代入原式计算即可求出值.【详解】解:∵x2+2(m﹣3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x的一次项,∴m﹣3=±1,n+2=0,解得:m=4,n=﹣2,此时原式=16;m=2,n=﹣2,此时原式=4,则原式=4或16,故选C.【点睛】此题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.2、B【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后根据角平分线的性质可得,然后根据直角三角形的性质可得,所以.【详解】根据题意得,AG是∠CAB的角平分线∵∴∵∴∴故答案为:B.【点睛】本题考查了三角形的角度问题,掌握角平分想的性质以及直角三角形的性质是解题的关键.3、C【分析】由图甲可知阴影部分的面积=大正方形的面积-两个长方形的面积+两个长方形重合部分的面积,由图乙可知阴影部分是边长为a-b的正方形,从而可知其面积为(a-b)2,从而得出结论.【详解】解:由图甲可知:阴影部分的面积=a2-2ab+b2由图乙可知:阴影部分的面积=(a-b)2∴a2-2ab+b2=(a-b)2故选C.【点睛】此题考查的是完全平方公式的几何意义,掌握阴影部分面积的两种求法是解决此题的关键.4、C【分析】根据负整数指数幂,逐个计算,即可解答.【详解】A.,正确,故本选项不符合题意;B.,正确,故本选项不符合题意;C.,错误,故本选项符合题意;D.,正确,故本选项不符合题意;故选:C.【点睛】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.5、C【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.6、C【分析】先利用平方差公式,再利用完全平方公式,进行因式分解,即可.【详解】原式=(a1+1+1a)(a1+1-1a)=(a+1)1(a-1)1.故选:C.【点睛】本题主要考查分解因式,掌握平方差公式,完全平方公式,是解题的关键.7、B【分析】利用多边形的内角和公式:,即可求出四边形AFED的内角和是360°,根据已知条件知BD⊥AC,CF⊥AB,得∠AFC=∠ADB=90°,因,即可得出的度数.【详解】解:∵高相交于点∴∠AFC=∠ADB=90°∵∴故选:B.【点睛】本题主要考查的是多边形的内角和公式以及角度的运算,掌握这两个知识点是解题的关键.8、C【分析】如图,作点P关于直线AD的对称点P′,连接QP′,由△AQP≌△AQP′,得PQ=QP′,欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.【详解】解:如图,作点P关于直线AD的对称点P′,连接QP′,△AQP和△AQP′中,,∴△AQP≌△AQP′,∴PQ=QP′∴欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.在Rt△ABC中,∵∠C=90°,AB=12,∠BAC=30°,∴BC=AB=6,∴PQ+BQ的最小值是6,故选:C.【点睛】本题考查了勾股定理、轴对称中的最短路线问题、垂线段最短等知识,找出点P、Q的位置是解题的关键.9、B【分析】设出另一个因式是(2x+a),然后根据多项式乘多项式的法则得出它的积,然后根据对应项的系数相等即可得出答案.【详解】解:设多项式,另一个因式为,
∵多项式有一个因式,
则,
∴3a+10=13,5a+4=9,2a=2,
∴a=1,
∴另一个因式为故选:B【点睛】此题主要考查了因式分解的意义,正确假设出另一个因式是解题关键.10、C【分析】根据勾股定理求出BC,当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【详解】因为中,,,,所以(cm)①当AB=BP时,t=(s);②当AB=AP时,因为AC⊥BC,所以BP=2BC=24cm,所以t=(s);③当BP=AP时,AP=BP=2tcm,CP=(12-2t)cm,AC=5cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=52+(12-2t)2,解得:t=综_上所述:当△ABP为等腰三角形时,或或12故选:C【点睛】考核知识点:等腰三角形,勾股定理.根据题画出图形,再利用勾股定理解决问题是关键.二、填空题(每小题3分,共24分)11、-4【分析】分式等于零时:分子等于零,且分母不等于零.【详解】由分式的值为零的条件得且,由,得,由,得,综上所述,分式的值为0,的值是−4.故答案为:−4.【点睛】此题考查分式的值为零的条件,解题关键在于掌握其性质.12、【分析】取AB的中点E,连接OE,DE,易得O,D之间的最大距离为OE+DE,分别求出OE,DE的长,即可得出答案.【详解】如图,取AB的中点E,连接OE,DE,∵AB=4∴AE=2∵四边形ABCD为矩形∴∠DAE=90°∵AD=2,AE=2∴DE=∵在Rt△AOB中,E为斜边AB的中点,∴OE=AB=2又∵OD≤OE+DE∴点到原点的距离最大值=OE+DE=故答案为:.【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,熟记直角三角形斜边上的中线等于斜边的一半,正确作出辅助线是解题的关键.13、【分析】先证明△ABC≌△DEF,得到∠A=∠D,由即可求得∠F的度数.【详解】解:∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS),
∴∠A=∠D∵,∴∠F=180°-62°-40°=78°,故答案为78°.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于基础题.14、.【详解】解:根据勾股定理列式计算即可得解:∵∠C=90°,AB=7,BC=5,∴.故答案为:.15、—1【解析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴AC=,∵A点表示-1,∴E点表示的数为:-1,故答案为-1.【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.16、【分析】观察所给的等式,等号右边是,,,…,,据此规律可求得的值,从而求得结论.【详解】观察下列等式,,,…,∴,∵,∴,,∴.故答案为:.【点睛】本题主要考查的是二次根式的混合运算以及归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.17、【详解】解:由于直线过点A(0,2),P(1,m),则,解得,,故所求不等式组可化为:mx>(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x<2,18、3xy【解析】试题解析:根据题意,得故答案为三、解答题(共66分)19、(1)平均增长率为40%;(2)售价应降低5元.【分析】(1)设该基地这两年种植面积的平均增长率为,增长两次后种植面积为,达到196亩即可列出方程求解;(2)设售价应降低元,则每天的销量为千克,每千克的利润为(45-m-33)元,再根据总利润=单个利润×数量即可列出方程求解.【详解】解:(1)设该基地这两年种植面积的平均增长率为,根据题意可得:,两边同时除以100,解得或-2.4(舍去),∴平均增长率为40%,故答案为:40%;(2)设售价应降低元,则每天的销量为千克,根据题意可得:解得或,当时,每天的销量为:200+50×3=350千克,当时,每天的销量为:200+50×5=450千克,∵要减少库存,故每天的销量越多越好,∴售价应降低5元,故答案为:售价应降低5元.【点睛】本题考查了一元二次方程在增长率问题和销售问题中的应用,根据题目正确列出方程是解题的关键.20、(1)m=4;(2)【解析】(1)把点P(2,m)代入直线y=2x可求m的值;(2)先求得PB=4,根据三角形面积公式可求AB=1,可得A1(5,0),A2(-1,0),再根据待定系数法可求k的值.【详解】(1)∵直线过点P(2,m),∴m=4(2)∵P(2,4),∴PB=4又∵△PAB的面积为6,∴AB=1.∴A1(5,0),A2(-1,0)当直线经过A1(5,0)和P(2,4)时,可得k=当直线经过A2(-1,0)和P(2,4)时,可得k=.综上所述,k=.【点睛】本题主要考查一次函数的交点问题,根据三角形面积间的关系得出点A的坐标及熟练掌握待定系数法求函数解析式是解题的关键.21、,当时,原式【分析】根据分式的运算法则即可化简,再代入使分式有意义的值即可求解.【详解】,当时,原式.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.22、(1)见解析;(2)仍然成立,理由见解析【分析】(1)要证明CF=BD,只要证明△BAD≌△CAF即可,根据等腰三角形的性质和正方形的性质可以证明△BAD≌△CAF,从而可以证明结论成立;(2)首先判断CF=BD仍然成立,然后根据题目中的条件,同(1)中的证明方法一样,本题得以解决.【详解】(1)证明:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠DAC+∠CAF=90°,∵∠BAC=90°,∴∠DAC+∠BAD=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC=∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD.【点睛】本题考查了正方形的性质、等腰三角形的性质和全等三角形的判定与性质,此题难度适中,注意利用公共角转化角相等作为证明全等的条件.23、AC=ED,理由见解析【分析】证得∠ACB=∠DEC,可证明△DEC≌△ACB,则AC=ED可证出.【详解】解:AC=ED,理由如下:∵AB⊥BC,EC⊥BC,DE⊥AC,∴∠ACB+∠FCE=90°,∠FCE+∠DEC=90°,∴∠ACB=∠DEC,∵BC=CE,∠ABC=∠DCE=90°∴△DEC≌△ACB(ASA),∴AC=ED.【点睛】本题主要考查了全等三角形的判定及性质,分析并证明全等所缺条件是解题关键.24、(1)8元;(2)1元.【分析】(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第一批手机壳进货单价为x元,
根据题意得:3•=,
解得:x=8,
经检验,x=8是分式方程的解.
答:第一批手机壳的进货单价是8元;
(2)设销售单价为m元,
根据题意得:200(m-8)+600(m-10)≥2000,
解得:m≥1.
答:销售单价至少为1元.【点睛】本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.25、(1)见解析;(2).【分析】(1)以A为圆心,以任意长度为半径作弧,分别交AC、AB于P、Q,分别以P、Q为圆心,以大于PQ长度为半径作弧,交于点M,连接AM并延长,交BC于D,从而作出AD;(2)过点D作DE⊥AB于E,根据勾股定理求出AB,然后根据角平分线的性质可得:DE=DC,最后根据三角形的面积公式求S△ADC:S△ADB的比值即可.【详解】解:(1)以A为圆心,以任意长度为半径作弧,分别交AC、AB于P、Q,分别以P、Q为圆心,以大于PQ长度为半径作弧,交于点M,连接AM并延长,交BC于D,如图所示:AD即为所求;(2)过点D作DE⊥AB于E∵AC=6,BC=8根据勾股定理可得:AB=∵AD平分∠CAB,DC⊥AC∴DE=DC∴S△ADC:S△ADB=(AC·DC):(AB·DE)=AC:AB=6:10=【点睛】此题考查的是画一个角的角平分线、勾股定理和角平分线的性质,掌握用尺规作图作一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟草厂特殊环境用电安全规范
- 旅游公司私企导游聘用合同
- 管理学校餐饮部员工合同
- 栅栏围墙钢结构施工合同范本
- 智能家居房产买卖合同范本格式
- 质量控制与市场营销
- 通信设备招投标管理操作指南
- 2022年大学林业工程专业大学物理下册期中考试试卷-含答案
- 2022年大学森林资源专业大学物理二期中考试试卷D卷-附解析
- 2022年大学航空航天专业大学物理二期末考试试题-含答案
- 路面弯沉温度修正系数
- 中国审判流程信息公开网案件查询
- 拒绝诱惑教学反思
- 【护理论文】护理论文范文(共40篇)
- 2023腿式机器人性能及试验方法
- 乳胶漆墙面施工方案范本
- Scratch在小学数学中的应用-以《长方形的周长》为例
- 化工企业停工方案范本
- 网络传播法规(自考14339)复习必备题库(含答案)
- 民法典合同编解读之合伙合同
- 高中英语学习情况问卷调查表及调查报告
评论
0/150
提交评论