版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章数学思维思维
数学思维
数学思维的类型数学思维方式掌捉的肺跺恰喻幸湾保毯茹肠痛弹由妈车擦谬站彬刽属登宛诈总霞供升劲数学思维数学思维第二章数学思维思维掌捉的肺跺恰喻幸湾保毯茹肠痛弹由妈车擦1思维
思维是人脑对客观事物的本质及其内在规律性联系概括的和间接的反映。思维有两个最显著的特征,一是概括性,二是间接性。
驯怒炎缕攻称规贸狂炽坤媚稳灵磁晋郑唉居苍樟酋柏隶肖剃暂褥水旧碘获数学思维数学思维思维
思维是人脑对客观事物的本质及其内在规律性联系概括的和间2思维的概括性
思维的概括性是指思维所反映的不是个别的事物或事物的个别属性,而是反映一类事物所共有的本质特征以及事物所有的普遍或必然的联系。爽脸倘佯幸桅霖颈峙炸酥本赖镜钝栏叉肤捣狡格茁诱惊尾妈统董抄舷槽吮数学思维数学思维思维的概括性
爽脸倘佯幸桅霖颈峙炸酥本赖镜钝栏叉肤捣狡格3思维的间接性
思维的间接性是指思维不是直接地,而是通过其他事物的媒介作用来反映客观事物的。正是由于思维具有间接性的特点,所以人们才能对那些未曾感知过或根本无法感知的事物做出反映,从而使人的知识范围扩大、延伸;同样也是由于思维具有间接性的特点,才使得人们能够预测未来,使行动有目的、有计划地进行。思维的间接性是随着主体知识经验的丰富而发展起来的,因此,知识和经验对思维能力有重要影响。葱走肯卞苍绎青榴夜笼遁尿僻孝嘛截缝耗七袒跺坛嚼徘跳呻丰巴艾稻刷旱数学思维数学思维思维的间接性葱走肯卞苍绎青榴夜笼遁尿僻孝嘛截缝耗七袒跺坛嚼4数学思维
数学思维是人脑和数学对象交互作用并按照一般的思维规律认识数学本质和规律的理性活动。具体来说,数学思维就是以数和形及其结构关系为思维对象,以数学语言和符号为思维的载体,并以认识发现数学规律为目的一种思维。
富孰捆怀虐阉站哦牌家氛老详臼牌犬孪驻随宗仕耿以赔泅匣嚏稗野踪孙十数学思维数学思维数学思维
数学思维是人脑和数学对象交互作用并按照一般的思维规5数学思维既从属于一般的人类思维,具有一般思维的特征,同时由于数学及其研究方法的特点,数学思维又具有不同于一般思维的自身特点,表现在思维活动是按客观存在的数学规律进行的,具有数学的特点与操作方式。特别是作为思维载体的数学语言的简约性和数学形式的符号化、抽象化、结构化倾向决定了数学思维具有不同于其他思维的独特风格。数学思维主要具有概括性、整体性、相似性和问题性等特点。漆兹枷烹擂益计筛灌役煽零吕兑温猪溪掳篇咯君谣踊酵沛愧抓姆杭铸饥宝数学思维数学思维数学思维既从属于一般的人类思维,具有一般思维的特征,同时由于6概括性
数学思维的概括性比一般思维的概括性更强,这是由于数学思维揭示的是事物之间内在的形式结构和数量关系及其规律,能够把握一类事物共有的数学属性。数学思维的概括性与数学知识的抽象性是互为表里、互为因果的。数学思维方法、思维模式的形成是数学思维概括水平的重要表现,概括的水平能够反映思维活动的速度、广度和深度、灵活程度以及创造程度。因此,提高主体的数学概括水平是发展数学思维能力的重要标志。甩值胀谁婚狠屡巡扳住柱彦堑院蹬瘟侦巾棘纽补檀象像玛棕挨寸付慑迫磅数学思维数学思维概括性甩值胀谁婚狠屡巡扳住柱彦堑院蹬瘟侦巾棘纽补檀象像玛棕7整体性
数学思维的整体性主要表现在它的统一性和对数学对象基本属性的准确把握。数学科学本身是具有统一性的,人们总是谋求新的概念、理论,把以往看来互不相关的东西统一在同一的理论体系中。数学思维的统一性,是就思维的宏观发展方向而言的,它总是越来越多地抛弃对象的具体属性,用统一的理论概括零散的事实。这样既便于简化研究,又能洞察到对象的本质。数学思维中对事物基本属性的把握,本质上源于数学中的公理化方法。这种整体性的思维方式对人们思考问题具有深远的影响。镑剔薄音儿轴港这力辛喇荐素签渺密喉阁番兴元篓橙刨基幌冗抿请炙篱烂数学思维数学思维整体性
数学思维的整体性主要表现在它的统一性和对数学对象基本8相似性
数学思维的相似性是思维相似律在数学思维活动中的反映。数学思维的相似性普遍存在,在创造性思维活动中发挥着重要作用。数学思维中到处渗透着异中求同、同中辨异的比较、分析过程。数学中的相似表现有几何相似、关系相似、结构相似与实质相似、静态相似与动态相似等。数学思维中的联想、类比、归纳和猜想等都是运用相似性探求数学规律、发现数学结论的主导方法。对相似因素和相似关系的认识能加深理解数学对象的内部联系和规律性,提高思维的深刻性,发展思维的创造性。因此,相似性是数学思维的一个重要特征。量燎困啪孤辆朔泻猖杏宁柏祭荒堵碑霜设赚返傈汗共仿肘咳烛咽拣敞袭遏数学思维数学思维相似性
数学思维的相似性是思维相似律在数学思维活动中的反映。9问题性
数学思维的问题性是与数学科学的问题性相关联的。问题是数学的心脏,数学科学的起源与发展都是由问题引起的。由于数学思维是解决数学问题的心智活动,它总是指向问题的变换,表现为不断地提出问题、分析问题和解决问题,使数学思维的结果形成问题的系统和定理的序列,达到掌握问题对象的数学特征和关系结构的目的。因此,问题性是数学思维目的性的体现,解决问题的活动是数学思维活动的中心。这一特点在数学思维方面的表现比任何思维都要突出。因此,80年代世界数学教育将“问题解决”作为其主要任务是有道理的。
蓟茸颧基凶涤顽疆而浪众奉共镰豹梁忻整瀑亡朗扰徒讨涅振豌糟措饺犬愉数学思维数学思维问题性
数学思维的问题性是与数学科学的问题性相关联的。问题是10数学思维的类型
数学逻辑思维数学形象思维数学直觉思维
雕湍信圃废币诅躇抿瑟敦奴露谊嚎缓捧贵强维灸史誓叹膛甄撵耪桔灾烹获数学思维数学思维数学思维的类型数学逻辑思维雕湍信圃废币诅躇抿瑟敦奴露谊嚎缓11数学逻辑思维
数学逻辑思维是指借助数学概念、判断、推理等思维形式,通过数学符号或语言来反映数学对象的本质和规律的一种思维。数学逻辑思维的显著特征是抽象性和逻辑性,这是由数学本身的特点和数学学习的需要决定的。数学具有严谨的逻辑体系,逻辑因素在数学中表现得最为明显。一方面,主要的数学事实按逻辑方法叙述或论证;大量的数学概念抽象概括的形式化、公理化;数学原理、公式、法则的推理论证高度严密等。另一方面,数学学习中不仅要记住按逻辑体系组成的大量概念、公式、定理和法则,而且要进行概念的分类、定理的证明、公式法则的推导,广泛使用各种逻辑推理和证明方法。歌转糯景葱碗曰哩挠丑酪午踞披莱亲错宾口蜗辫伞茬丧佛猖唐箩锥万势析数学思维数学思维数学逻辑思维
数学逻辑思维是指借助数学概念、判断、推理等思维12数学形象思维
数学形象思维是指借助数学形象或表象,反映数学对象的本质和规律的一种思维。在数学形象思维中,表象与想象是两种主要形式,其中数学表象又是数学形象思维的基本元素。
援拴阂琐呜衍隅速毙险地鱼玖园姻眼版厨苍线懂宫彭蟹飘携纱慰狐枉妊瘪数学思维数学思维数学形象思维
数学形象思维是指借助数学形象或表象,反映数学对13数学表象数学表象是以往感知过的观念形象的重现。数学表象常常以反映事物本质联系的特定模式——结构来表现。例如,数学中“球”的形象,已是脱离了具体的足球、篮球、排球、乒乓球等形象,而是与定点距离相等的空间内点的集合。显示了集合内的点(球面上的点)与定点(球心)之间的本质联系:距离相等。
投僧淑畔太傀捐对培蠕翅阻骤施序厕趁究忿琼瓤裂嘘盅斜盔岳围革孵呈蜀数学思维数学思维数学表象投僧淑畔太傀捐对培蠕翅阻骤施序厕趁究忿琼瓤裂嘘盅斜盔14数学想象数学想象是数学形象思维的一种重要形式,通常可分为再造性想象和创造性想象两种类型。
叉誉匡爵畴磋何妆携惠矛烷墙沉箩瘫首搂狱谍邢熏耿墟瑶躇叮绝碍卡停狼数学思维数学思维数学想象叉誉匡爵畴磋何妆携惠矛烷墙沉箩瘫首搂狱谍邢熏耿墟瑶躇15再造性想象
再造性想象是根据数学语言、符号、数学表达式或图形、图表、图解等提示,经加工改造而形成新的数学形象的思维过程。再造性想象有两个特征:一个是生成的新形象虽未感知过,但并非完全由自己创造或创新,是根据别人描述或者示意再造出来的;一个是新形象是头脑中原有表象经过加工改造而成的,其中包含着个人知识与理解能力的作用,因此又有创造的成分。谗赤摈碱凹瑶悔抛妹猛请拜敢茬钎归成簿原跳撕则纺善琼悄霹泻运滦言狐数学思维数学思维再造性想象
再造性想象是根据数学语言、符号、数学表达式或图16进行再造性想象必须具备两个条件:①必须正确理解所给数学语言、符号、表达式、图形或图解的确切意义,以保证新形象的准确与真实;②必须以丰富的表象储备为基础,头脑中的形象表象越丰富、越鲜明,再造性想象就越灵活、越清晰,从而再造想象的结果就越准确、越精密。海腾缉瞥遵圣商硝酣爪帧榔份饭赐食限仔恶诡月粘追窒匆嘱痴聘染泪约逞数学思维数学思维进行再造性想象必须具备两个条件:海腾缉瞥遵圣商硝酣爪帧榔份饭17创造性想象
创造性想象是一种不依靠现成的数学语言和数学符号的描述,也不依据现成的数学表达式和数学图形的提示,只依据思维的目的和任务在头脑中独立地创造出新的形象的思维过程。思维结果的新颖、独特是创造性想象的主要特征。钵责哦事收暇爷骂余堕买巩汝捞食钞傍蝎蚂衙捣厅堆犁宗杀课谋殃硅谐怂数学思维数学思维创造性想象
创造性想象是一种不依靠现成的数学语言和数学符号18进行创造性想象必须具备以下三个条件:①必须对所研究的问题本身进行深入细致的观察,形成丰富的表象储备;②必须对所研究的问题情境进行发散式思考,掌握有关知识和经验的丰富材料,具备高水平的表象重构能力;③必须抓住契机引发想象,突破思维的障碍,想象出问题结果并做出逻辑上的检验。幂基搅鲸央鹊豆砖哭拢砌斡儡秽譬霹乒醚柑擂涸截壹爸袭景瓦又予你测逆数学思维数学思维幂基搅鲸央鹊豆砖哭拢砌斡儡秽譬霹乒醚柑擂涸截壹爸袭景瓦又予你19创造性想象与再造性想象的区别在于:①再造性想象可以依据给定的数学语言、符号、数学表达式和图形的提示而展开,思维有所遵循,而创造性想象是根据思维的目的和任务进行的形象改造;②再造性想象的思维成果是已有的形象,而创造性想象的思维成果则是经过改造的数学形象的综合。例如,在数学科学发展史上,罗巴切夫斯基发现非欧几何的过程就是创造性想象。法国大数学家笛卡尔把长期分道扬镳的代数和几何联系起来而创立了解析几何,他借助于曲线上“点的运动”这一想象,创造出变量和坐标系的新的形象,把抽象的方程展示为直观的平面和空间图形,这也是一种创造性想象。固裹赂颓询第驳历蒜吨喷捶存震林攒荷盅剥榜嫌橱历放犹按笛淄健益减止数学思维数学思维创造性想象与再造性想象的区别在于:固裹赂颓询第驳历蒜吨喷捶存20数学直觉思维
数学直觉思维是以一定的知识经验为基础,通过对数学对象作总体观察,在一瞬间顿悟到对象的某方面的本质,从而迅速作出估断的一种思维。数学直觉思维是一种非逻辑思维活动,是一种由下意识(潜意识)活动参与,不受固定逻辑规则约束,由思维主体自觉领悟事物本质的思维活动。因此,非逻辑性是数学直觉思维的基本特征,同时数学直觉思维还具有直接性、整体性、或然性、不可解释性等重要特征。亨术瓮喻鬼危漂尸蠕尤棠隔盔忍这亲壁讲森锌核憎则版称蠢歇绑玛娘胰籽数学思维数学思维数学直觉思维
数学直觉思维是以一定的知识经验为基础,通过对数21直接性
数学直觉思维是直接反映数学对象、结构以及关系的思维活动,这种思维活动表现为对认识对象的直接领悟或洞察,这是数学直觉思维的本质特征。由于数学直觉思维的直接性,使它在时间上表现为快速性,即数学直觉思维有时是在一刹那时间内完成的;由于数学直觉思维的直接性,使它在过程上表现为跳跃性(或间断性),直觉思维并不按常规的逻辑规则前进,而是跳过若干中间步骤或放过个别细节而从整体上直接把握研究对象的本质和联系。
副柞形猛哉逗录孜蒸坑裙西翘甜赛吗履替姚再咱栏昼辣小渣笔整困韭无寅数学思维数学思维直接性
副柞形猛哉逗录孜蒸坑裙西翘甜赛吗履替姚再咱栏昼辣小22整体性
是指数学直觉思维的结果是关于对象的整体性认识,尽管这并非是一幅毫无遗漏的“图画”,它的某些细节甚至可能是模糊的,但是,它却清楚地表明了事物的本质或问题的关键。辰熄歉沈株升岩逐痹辟残校伶届陶迅翁遁至钦荆肮宣大承即裙迂瞄绅责肚数学思维数学思维整体性
辰熄歉沈株升岩逐痹辟残校伶届陶迅翁遁至钦荆肮宣大23或然性
数学直觉思维是一种跳跃式的思维,是在逻辑依据不充分的前提下做出的结论,具有猜测性。正因为如此,任何通过直觉思维“俘获来的战利品”就需要经过严格的逻辑验证。采用直觉思维的目的在于迅速找到事物的本质或内在联系,提出猜想,而不在于论证这个猜想。漳鼓究俞窒工脑柑忍顺管上侵当绥裳屹饺玩年溶含帮锄票杆迭督湾响躲壮数学思维数学思维或然性
漳鼓究俞窒工脑柑忍顺管上侵当绥裳屹饺玩年溶含帮锄24不可解释性
数学直觉思维在客观上往往给人以不可解释之感。由于直觉思维是在一刹那间完成的,、略去了许多中间环节,思维者对其过程没有清晰的意识,所以要想对它的过程进行分析、研究和追忆,往往是十分困难的,这又使直觉思维给人一种“神秘感”例如,高斯曾花几年的时间证明一个算术定理,最终获得了解决。对此他回忆说:“我突然证出来了,但这简直不是我自己努力的结果,而是由于上帝的恩赐——如同闪电那样突然出现在我脑海之中,疑团一下子被解开了,连我自己也无法说清在先前已经了解的东西与使我获得成功的东西之间是怎样联系起来的”.焰扶胳腕主琴恳苗贸裳懦觉立恕肘撒丧夯什顽吕枚空沾海近惩宿净贸翠怨数学思维数学思维不可解释性
焰扶胳腕主琴恳苗贸裳懦觉立恕肘撒丧夯什顽吕枚空25数学思维的智力品质1、数学思维的广阔性与深刻性思维的广阔性是指思路开阔,善于全面地考虑问题.表现为在思考问题时,能全面地从多方面看问题,着眼于事物之间的联系和关系,照顾到问题各方面的条件.思维的广阔性是以丰富的多方面的知识经验为前提的,只有具备大量的丰富的知识经验,才能从事物的不同角度、不同方面全面地去考虑问题,避免狭隘性和片面性.监掷撼臣麦膊汰尿惩网拒邪聚阅逃慑蓝凿琴枝眨拇老址馅摧筑俞异周汇泅数学思维数学思维数学思维的智力品质1、数学思维的广阔性与深刻性监掷撼臣麦膊汰26思维的深刻性是指善于深入地思考问题,善于从纷繁复杂的表面现象中发现最本质最核心的问题.它表现为思维活动的深刻程度和抽象程度,善于概括归纳,逻辑抽象性强,善于分清事物的实质,洞察事物的本质,系统地展开理性活动,善于深入理解现象和现象发生的原因,发现他人没有发现过的问题,并能预见事物的发展过程,善于系统地深入地揭示事物的本质和内在规律性关系.具有思维深刻性品质的学生,善于从简单的、普通的、司空见惯的现象中,看出问题,从中揭示出事物重要的规律来.估瓮鸽何尼卓篡悟枢醛痢紊蕉译删隙邻吱屯褒杰醇罢嵌豹众聪梅橇谍酝汛数学思维数学思维思维的深刻性是指善于深入地思考问题,善于从纷繁复杂的表面现象272、数学思维的独立性与批判性思维的独立性是指善于独立思考、善于独立发现问题和解决问题.思维独立性是人们进行创造活动的前提,也是创新人才必备的思维品质.思维的独立性突出地表现为三个特点:独特性、发散性和新颖性.澡酉枢挡授戊油狸受斡桨碟靛哪饯豺削扛狮敲株窒歪惊悦郊叹溢生诀疯役数学思维数学思维2、数学思维的独立性与批判性思维的独立性是指善于独立思考、善28思维的独立性是以思维的批判性为前提的.思维的批判性是指有分析地估价思维材料和严密审慎地检查思维过程的品质.在解题过程中,思维的批判性特征在于有能力评价解题思路选择得是否正确以及评价这种思路可能导致的结果如何.在教学过程中,学生思维的批判性,表现为一种趋向,愿意进行各种各样的检验,检验已得到的粗略结果以及对归纳、分析和直觉的推理过程进行检验等.启胞嘲粗才钦杠甘酒曼涕低曹茹剔烦绽振逝扮硅估徒毗网抨俭躁驮蕴徘遗数学思维数学思维思维的独立性是以思维的批判性为前提的.思维的批判性是指有分析29数学思维的批判性品质常表现为分析性、策略性、全面性、独立性、正确性五方面的特点,这些特点在学生解题过程中表现得尤为突出.具体地,(1)分析性,即在数学思维活动中不断地分析解决问题所依据的条件,反复验证业已拟定的假设、计划和方案;(2)策略性,即能够根据当前任务的需要,调动自己已有的知识经验,将它们组织为相应的解题策略或手段,并使它们在解题中发挥作用;(3)全面性,即在数学思维活动中能够客观地从各个方面考虑问题,把握问题的进展情况,善于进行自我评价,坚持正确计划,随时修改错误方案;(4)独立性,即不为情景性暗示所左右,不迷信权威,敢于对权威的观点提出疑问,不人云亦云、盲目附和;(5)正确性,即思维过程严谨,条理清晰,思维结果正确,结论实事求是.概闰肆锡裤贴彭顽驰株雌鹰腊船谜革责戳肃寂吨蕾饵棍携绝璃豁弥劣馆念数学思维数学思维数学思维的批判性品质常表现为分析性、策略性、全面性、独立性、303、数学思维的灵活性与敏捷性
数学思维灵活性主要是指摆脱旧的思维序列的束缚影响,机动灵活地从一种思维过程转向另一种思维过程.这种思维的灵活性表现为能够根据客观事物的发展与变化,及时调整自己的思路,改变已有的思维过程,寻找新的解决问题的方法.也就是说,数学思维的灵活性主要是学生在数学思维活动中,思考的方向多、过程活、思维技巧能够适时转换,即思维的应变能力强.敏贬伺睬贾仍缀邮源伎坊筐凭耀归堆藏春罩干雏润伶谐塔娶奖傻牟磁披对数学思维数学思维3、数学思维的灵活性与敏捷性
数学思维灵活性主要是指摆脱旧的31数学学习中思维灵活性往往表现在根据具体条件而确定解题方向,并能随着条件的变化而有的放矢地转化解题方法;表现在从新的高度、新的角度看待已知知识;还表现在从已知的数学关系中看出新的数学关系.思维的灵活性与思维的发散性有一致的地方,“一题多解”常作为训练发散思维和数学思维灵活性的有效方法.思维的灵活来自于求异思维,而求异思维又来自于迁移.因为灵活性越大,思维的发散性越好,越能多解,说明迁移的效果越显著廓闷粉昧罪苟恃款棉练诞肤拄舞溜蝇夕吕喝哎暮彼掌毗霞泽砒拦再两益盈数学思维数学思维数学学习中思维灵活性往往表现在根据具体条件而确定解题方向,并32思维的敏捷性是指思维过程中正确前提下思维的迅速和简捷.有了思维的敏捷性,在处理和解决问题的过程中就能根据具体情况进行积极思考,正确做出判断并迅速做出选择.这就要求人的认知结构系统化、结构化,具有清晰性、稳定性和可利用性,一旦需要便能迅速而正确地进行检索和提取.赚邻宝痞膳腕翠终介织闸邱食擂奏烽矿蚂著斟甜巩芬冻审知捂耕抛逐肾橱数学思维数学思维思维的敏捷性是指思维过程中正确前提下思维的迅速和简捷.有了思33在数学学习中,思维的敏捷性主要表现为能够缩短运算环节和推理过程,而这又有赖于在正确前提下的速度训练.经过练习,从中总结经验,进而概括出规律,并通过应用而达到熟练的程度,从而产生思维的敏捷性.因此,敏捷性又与概括性紧密相联,推理的缩短取决于概括,“能‘立即’进行概括的学生,也能‘立即’进行推理的缩短.”更枚函惹懈俩鲜虱贝蔼惟拜市耗知踌尉盏摈窒辉貉画珐灶猩狱东竹擎拥铃数学思维数学思维在数学学习中,思维的敏捷性主要表现为能够缩短运算环节和推理过34第五章数学课堂教学艺术数学课堂教学艺术概说数学教学语言艺术导入的艺术提问的艺术教学情境的创设艺术遁继盟超阂写邢窖急庐惠噪碉罕酱圈丛睫袖撬袜睹尔惶摩楞徒烈鸵歼拂桅数学思维数学思维第五章数学课堂教学艺术数学课堂教学艺术概说遁继盟超阂写邢窖35§1数学教学艺术概说一、数学教学艺术的内涵数学课堂教学艺术,是指数学教师综合运用数学教学论、数学学习论等理论,遵循数学教学规律和学生的认知特点,在数学教学活动中,以富有个性特色的独特的方式方法,创造性地组织数学教学,使教学达到最佳效果的精湛的教学技巧。它是教师学识和智慧的结晶,是教师创造性地运用教学方式方法的升华,是教学合规律性与教学独创性的完满结合,是求美和求真的和谐统一。而这正是数学教学艺术的本质所在。澡垂夺藤洽累掠杀烹始硝检错栈盔喉袁屡窑硷筋靛屿渤赢灯何孩两盗紊篙数学思维数学思维§1数学教学艺术概说一、数学教学艺术的内涵澡垂夺藤洽累36二、数学教学艺术的基本特征
1、独创性教育家第斯多惠曾指出:“教师必须有独创性”。数学教学的复杂性决定了教师劳动的创造性。教师面对的是属于变化的千差万别的学生,不可能用刻板的公式去解决课堂上出现的各种问题,无论是教案、内容处理、教法选择、教学手段的应用,教学过程的组织,数学解题的指导,都需要教师发挥自己的独创性。钨搪掣夹妙整巫跃五扛序湃焉照狱橱认谆炽窜眼陨啪候李牵柄阳布妮艰妊数学思维数学思维二、数学教学艺术的基本特征钨搪掣夹妙整巫跃五扛序湃焉照狱372、表演性课堂教学是教师通过口头表述、行为动作和面部表情等途径向学生传递知识信息的活动,这种活动本身就是一种表演艺术。所以,教育家罗伯特·特拉佛斯认为“教学之所以称为独具特色的表演艺术,它区别于其他任何表演艺术,这是由教师与那些观看表演的人的关系所决定的。”毫无疑问,掌握较高课堂教学艺术的教师,就能够取得较好的教学效果。危胶勤甫辱辣斋佑锭锭骏余嫂轨吠姬扒诵坐弘且阑胚争葵赂扔淬颠刃救噎数学思维数学思维2、表演性危胶勤甫辱辣斋佑锭锭骏余嫂轨吠姬扒诵坐弘且阑胚争葵383、情感性数学教学作为一门科学,主要运用理性,以理服人;作为一门艺术,则主要运用情感,以情感人,具体表现在各种情感手法的运用上。教学艺术水平高的数学老师,在教学中能表现出情感性的教态,创设出情感性的情境,挖掘出教学内容中的情感性因素,置学生于一般情感激发、陶冶的气氛中。情感不仅有动力作用,而且能消除疲劳、激发创造,学生可乐此不疲,思维敏捷灵活,富有创造性。亮队聊撇厦买少谍到蓝拽峦稽揪捐帘驶巡那蘑阑练补吃泡睛佰得裔禾案绚数学思维数学思维3、情感性亮队聊撇厦买少谍到蓝拽峦稽揪捐帘驶巡那蘑阑练补吃泡394、灵活性数学课堂教学既是有意识有计划和有章可循的,有时又是即兴的和应变的。经验丰富的教师在教学过程中犹如演员进入艺术创作的角色,用自己的直觉和灵感即兴发挥。这种即兴发挥不在原来教学方案之内,但顺乎教学境境之自然或必然,有锦上添花之功效。占妨晰骆信袖确溃禹箱棵钉低碱钉鞍虑婚叉献盾痕腥蛙欢瞥芦芍疮坊赊氰数学思维数学思维4、灵活性占妨晰骆信袖确溃禹箱棵钉低碱钉鞍虑婚叉献盾痕腥蛙欢40教学艺术的灵活性还表现在处理课堂教学中长沙的突发性问题上,这常常出自学生意外的提问。教师对这些问题作出的恰当而迅速的回答,就是一种即兴发挥。即兴发挥是教师根据直觉进行大胆、简捷的推论、选择和判断。教学艺术的灵活性与教学的计划性并不矛盾,即使是周密的教学计划,真正运用或执行起来也需要有灵活性和创造性。因为,任何计划无论多么周密和精确,都不可能准确预测将要发生的一切具体细节,有计划而又不拘泥于计划,善于创造,这就是课堂教学的灵活性。寡杰乎蔗思淆食询朴拯其面撂二椿朋祈缩仍叠木酿汀旬蜂逢筑桃百缝旺破数学思维数学思维教学艺术的灵活性还表现在处理课堂教学中长沙的突发性问题上,这41三、数学教学艺术的功能1、高效功能2、激励功能3、美育功能4、整体功能哭捍哲织贝砰丛逛歪砒蚂搪五甚判忠蚕巩队溯喝陡乞轮酝霹崔回瞩恋爪妊数学思维数学思维三、数学教学艺术的功能哭捍哲织贝砰丛逛歪砒蚂搪五甚判忠蚕巩42第二章数学思维思维
数学思维
数学思维的类型数学思维方式掌捉的肺跺恰喻幸湾保毯茹肠痛弹由妈车擦谬站彬刽属登宛诈总霞供升劲数学思维数学思维第二章数学思维思维掌捉的肺跺恰喻幸湾保毯茹肠痛弹由妈车擦43思维
思维是人脑对客观事物的本质及其内在规律性联系概括的和间接的反映。思维有两个最显著的特征,一是概括性,二是间接性。
驯怒炎缕攻称规贸狂炽坤媚稳灵磁晋郑唉居苍樟酋柏隶肖剃暂褥水旧碘获数学思维数学思维思维
思维是人脑对客观事物的本质及其内在规律性联系概括的和间44思维的概括性
思维的概括性是指思维所反映的不是个别的事物或事物的个别属性,而是反映一类事物所共有的本质特征以及事物所有的普遍或必然的联系。爽脸倘佯幸桅霖颈峙炸酥本赖镜钝栏叉肤捣狡格茁诱惊尾妈统董抄舷槽吮数学思维数学思维思维的概括性
爽脸倘佯幸桅霖颈峙炸酥本赖镜钝栏叉肤捣狡格45思维的间接性
思维的间接性是指思维不是直接地,而是通过其他事物的媒介作用来反映客观事物的。正是由于思维具有间接性的特点,所以人们才能对那些未曾感知过或根本无法感知的事物做出反映,从而使人的知识范围扩大、延伸;同样也是由于思维具有间接性的特点,才使得人们能够预测未来,使行动有目的、有计划地进行。思维的间接性是随着主体知识经验的丰富而发展起来的,因此,知识和经验对思维能力有重要影响。葱走肯卞苍绎青榴夜笼遁尿僻孝嘛截缝耗七袒跺坛嚼徘跳呻丰巴艾稻刷旱数学思维数学思维思维的间接性葱走肯卞苍绎青榴夜笼遁尿僻孝嘛截缝耗七袒跺坛嚼46数学思维
数学思维是人脑和数学对象交互作用并按照一般的思维规律认识数学本质和规律的理性活动。具体来说,数学思维就是以数和形及其结构关系为思维对象,以数学语言和符号为思维的载体,并以认识发现数学规律为目的一种思维。
富孰捆怀虐阉站哦牌家氛老详臼牌犬孪驻随宗仕耿以赔泅匣嚏稗野踪孙十数学思维数学思维数学思维
数学思维是人脑和数学对象交互作用并按照一般的思维规47数学思维既从属于一般的人类思维,具有一般思维的特征,同时由于数学及其研究方法的特点,数学思维又具有不同于一般思维的自身特点,表现在思维活动是按客观存在的数学规律进行的,具有数学的特点与操作方式。特别是作为思维载体的数学语言的简约性和数学形式的符号化、抽象化、结构化倾向决定了数学思维具有不同于其他思维的独特风格。数学思维主要具有概括性、整体性、相似性和问题性等特点。漆兹枷烹擂益计筛灌役煽零吕兑温猪溪掳篇咯君谣踊酵沛愧抓姆杭铸饥宝数学思维数学思维数学思维既从属于一般的人类思维,具有一般思维的特征,同时由于48概括性
数学思维的概括性比一般思维的概括性更强,这是由于数学思维揭示的是事物之间内在的形式结构和数量关系及其规律,能够把握一类事物共有的数学属性。数学思维的概括性与数学知识的抽象性是互为表里、互为因果的。数学思维方法、思维模式的形成是数学思维概括水平的重要表现,概括的水平能够反映思维活动的速度、广度和深度、灵活程度以及创造程度。因此,提高主体的数学概括水平是发展数学思维能力的重要标志。甩值胀谁婚狠屡巡扳住柱彦堑院蹬瘟侦巾棘纽补檀象像玛棕挨寸付慑迫磅数学思维数学思维概括性甩值胀谁婚狠屡巡扳住柱彦堑院蹬瘟侦巾棘纽补檀象像玛棕49整体性
数学思维的整体性主要表现在它的统一性和对数学对象基本属性的准确把握。数学科学本身是具有统一性的,人们总是谋求新的概念、理论,把以往看来互不相关的东西统一在同一的理论体系中。数学思维的统一性,是就思维的宏观发展方向而言的,它总是越来越多地抛弃对象的具体属性,用统一的理论概括零散的事实。这样既便于简化研究,又能洞察到对象的本质。数学思维中对事物基本属性的把握,本质上源于数学中的公理化方法。这种整体性的思维方式对人们思考问题具有深远的影响。镑剔薄音儿轴港这力辛喇荐素签渺密喉阁番兴元篓橙刨基幌冗抿请炙篱烂数学思维数学思维整体性
数学思维的整体性主要表现在它的统一性和对数学对象基本50相似性
数学思维的相似性是思维相似律在数学思维活动中的反映。数学思维的相似性普遍存在,在创造性思维活动中发挥着重要作用。数学思维中到处渗透着异中求同、同中辨异的比较、分析过程。数学中的相似表现有几何相似、关系相似、结构相似与实质相似、静态相似与动态相似等。数学思维中的联想、类比、归纳和猜想等都是运用相似性探求数学规律、发现数学结论的主导方法。对相似因素和相似关系的认识能加深理解数学对象的内部联系和规律性,提高思维的深刻性,发展思维的创造性。因此,相似性是数学思维的一个重要特征。量燎困啪孤辆朔泻猖杏宁柏祭荒堵碑霜设赚返傈汗共仿肘咳烛咽拣敞袭遏数学思维数学思维相似性
数学思维的相似性是思维相似律在数学思维活动中的反映。51问题性
数学思维的问题性是与数学科学的问题性相关联的。问题是数学的心脏,数学科学的起源与发展都是由问题引起的。由于数学思维是解决数学问题的心智活动,它总是指向问题的变换,表现为不断地提出问题、分析问题和解决问题,使数学思维的结果形成问题的系统和定理的序列,达到掌握问题对象的数学特征和关系结构的目的。因此,问题性是数学思维目的性的体现,解决问题的活动是数学思维活动的中心。这一特点在数学思维方面的表现比任何思维都要突出。因此,80年代世界数学教育将“问题解决”作为其主要任务是有道理的。
蓟茸颧基凶涤顽疆而浪众奉共镰豹梁忻整瀑亡朗扰徒讨涅振豌糟措饺犬愉数学思维数学思维问题性
数学思维的问题性是与数学科学的问题性相关联的。问题是52数学思维的类型
数学逻辑思维数学形象思维数学直觉思维
雕湍信圃废币诅躇抿瑟敦奴露谊嚎缓捧贵强维灸史誓叹膛甄撵耪桔灾烹获数学思维数学思维数学思维的类型数学逻辑思维雕湍信圃废币诅躇抿瑟敦奴露谊嚎缓53数学逻辑思维
数学逻辑思维是指借助数学概念、判断、推理等思维形式,通过数学符号或语言来反映数学对象的本质和规律的一种思维。数学逻辑思维的显著特征是抽象性和逻辑性,这是由数学本身的特点和数学学习的需要决定的。数学具有严谨的逻辑体系,逻辑因素在数学中表现得最为明显。一方面,主要的数学事实按逻辑方法叙述或论证;大量的数学概念抽象概括的形式化、公理化;数学原理、公式、法则的推理论证高度严密等。另一方面,数学学习中不仅要记住按逻辑体系组成的大量概念、公式、定理和法则,而且要进行概念的分类、定理的证明、公式法则的推导,广泛使用各种逻辑推理和证明方法。歌转糯景葱碗曰哩挠丑酪午踞披莱亲错宾口蜗辫伞茬丧佛猖唐箩锥万势析数学思维数学思维数学逻辑思维
数学逻辑思维是指借助数学概念、判断、推理等思维54数学形象思维
数学形象思维是指借助数学形象或表象,反映数学对象的本质和规律的一种思维。在数学形象思维中,表象与想象是两种主要形式,其中数学表象又是数学形象思维的基本元素。
援拴阂琐呜衍隅速毙险地鱼玖园姻眼版厨苍线懂宫彭蟹飘携纱慰狐枉妊瘪数学思维数学思维数学形象思维
数学形象思维是指借助数学形象或表象,反映数学对55数学表象数学表象是以往感知过的观念形象的重现。数学表象常常以反映事物本质联系的特定模式——结构来表现。例如,数学中“球”的形象,已是脱离了具体的足球、篮球、排球、乒乓球等形象,而是与定点距离相等的空间内点的集合。显示了集合内的点(球面上的点)与定点(球心)之间的本质联系:距离相等。
投僧淑畔太傀捐对培蠕翅阻骤施序厕趁究忿琼瓤裂嘘盅斜盔岳围革孵呈蜀数学思维数学思维数学表象投僧淑畔太傀捐对培蠕翅阻骤施序厕趁究忿琼瓤裂嘘盅斜盔56数学想象数学想象是数学形象思维的一种重要形式,通常可分为再造性想象和创造性想象两种类型。
叉誉匡爵畴磋何妆携惠矛烷墙沉箩瘫首搂狱谍邢熏耿墟瑶躇叮绝碍卡停狼数学思维数学思维数学想象叉誉匡爵畴磋何妆携惠矛烷墙沉箩瘫首搂狱谍邢熏耿墟瑶躇57再造性想象
再造性想象是根据数学语言、符号、数学表达式或图形、图表、图解等提示,经加工改造而形成新的数学形象的思维过程。再造性想象有两个特征:一个是生成的新形象虽未感知过,但并非完全由自己创造或创新,是根据别人描述或者示意再造出来的;一个是新形象是头脑中原有表象经过加工改造而成的,其中包含着个人知识与理解能力的作用,因此又有创造的成分。谗赤摈碱凹瑶悔抛妹猛请拜敢茬钎归成簿原跳撕则纺善琼悄霹泻运滦言狐数学思维数学思维再造性想象
再造性想象是根据数学语言、符号、数学表达式或图58进行再造性想象必须具备两个条件:①必须正确理解所给数学语言、符号、表达式、图形或图解的确切意义,以保证新形象的准确与真实;②必须以丰富的表象储备为基础,头脑中的形象表象越丰富、越鲜明,再造性想象就越灵活、越清晰,从而再造想象的结果就越准确、越精密。海腾缉瞥遵圣商硝酣爪帧榔份饭赐食限仔恶诡月粘追窒匆嘱痴聘染泪约逞数学思维数学思维进行再造性想象必须具备两个条件:海腾缉瞥遵圣商硝酣爪帧榔份饭59创造性想象
创造性想象是一种不依靠现成的数学语言和数学符号的描述,也不依据现成的数学表达式和数学图形的提示,只依据思维的目的和任务在头脑中独立地创造出新的形象的思维过程。思维结果的新颖、独特是创造性想象的主要特征。钵责哦事收暇爷骂余堕买巩汝捞食钞傍蝎蚂衙捣厅堆犁宗杀课谋殃硅谐怂数学思维数学思维创造性想象
创造性想象是一种不依靠现成的数学语言和数学符号60进行创造性想象必须具备以下三个条件:①必须对所研究的问题本身进行深入细致的观察,形成丰富的表象储备;②必须对所研究的问题情境进行发散式思考,掌握有关知识和经验的丰富材料,具备高水平的表象重构能力;③必须抓住契机引发想象,突破思维的障碍,想象出问题结果并做出逻辑上的检验。幂基搅鲸央鹊豆砖哭拢砌斡儡秽譬霹乒醚柑擂涸截壹爸袭景瓦又予你测逆数学思维数学思维幂基搅鲸央鹊豆砖哭拢砌斡儡秽譬霹乒醚柑擂涸截壹爸袭景瓦又予你61创造性想象与再造性想象的区别在于:①再造性想象可以依据给定的数学语言、符号、数学表达式和图形的提示而展开,思维有所遵循,而创造性想象是根据思维的目的和任务进行的形象改造;②再造性想象的思维成果是已有的形象,而创造性想象的思维成果则是经过改造的数学形象的综合。例如,在数学科学发展史上,罗巴切夫斯基发现非欧几何的过程就是创造性想象。法国大数学家笛卡尔把长期分道扬镳的代数和几何联系起来而创立了解析几何,他借助于曲线上“点的运动”这一想象,创造出变量和坐标系的新的形象,把抽象的方程展示为直观的平面和空间图形,这也是一种创造性想象。固裹赂颓询第驳历蒜吨喷捶存震林攒荷盅剥榜嫌橱历放犹按笛淄健益减止数学思维数学思维创造性想象与再造性想象的区别在于:固裹赂颓询第驳历蒜吨喷捶存62数学直觉思维
数学直觉思维是以一定的知识经验为基础,通过对数学对象作总体观察,在一瞬间顿悟到对象的某方面的本质,从而迅速作出估断的一种思维。数学直觉思维是一种非逻辑思维活动,是一种由下意识(潜意识)活动参与,不受固定逻辑规则约束,由思维主体自觉领悟事物本质的思维活动。因此,非逻辑性是数学直觉思维的基本特征,同时数学直觉思维还具有直接性、整体性、或然性、不可解释性等重要特征。亨术瓮喻鬼危漂尸蠕尤棠隔盔忍这亲壁讲森锌核憎则版称蠢歇绑玛娘胰籽数学思维数学思维数学直觉思维
数学直觉思维是以一定的知识经验为基础,通过对数63直接性
数学直觉思维是直接反映数学对象、结构以及关系的思维活动,这种思维活动表现为对认识对象的直接领悟或洞察,这是数学直觉思维的本质特征。由于数学直觉思维的直接性,使它在时间上表现为快速性,即数学直觉思维有时是在一刹那时间内完成的;由于数学直觉思维的直接性,使它在过程上表现为跳跃性(或间断性),直觉思维并不按常规的逻辑规则前进,而是跳过若干中间步骤或放过个别细节而从整体上直接把握研究对象的本质和联系。
副柞形猛哉逗录孜蒸坑裙西翘甜赛吗履替姚再咱栏昼辣小渣笔整困韭无寅数学思维数学思维直接性
副柞形猛哉逗录孜蒸坑裙西翘甜赛吗履替姚再咱栏昼辣小64整体性
是指数学直觉思维的结果是关于对象的整体性认识,尽管这并非是一幅毫无遗漏的“图画”,它的某些细节甚至可能是模糊的,但是,它却清楚地表明了事物的本质或问题的关键。辰熄歉沈株升岩逐痹辟残校伶届陶迅翁遁至钦荆肮宣大承即裙迂瞄绅责肚数学思维数学思维整体性
辰熄歉沈株升岩逐痹辟残校伶届陶迅翁遁至钦荆肮宣大65或然性
数学直觉思维是一种跳跃式的思维,是在逻辑依据不充分的前提下做出的结论,具有猜测性。正因为如此,任何通过直觉思维“俘获来的战利品”就需要经过严格的逻辑验证。采用直觉思维的目的在于迅速找到事物的本质或内在联系,提出猜想,而不在于论证这个猜想。漳鼓究俞窒工脑柑忍顺管上侵当绥裳屹饺玩年溶含帮锄票杆迭督湾响躲壮数学思维数学思维或然性
漳鼓究俞窒工脑柑忍顺管上侵当绥裳屹饺玩年溶含帮锄66不可解释性
数学直觉思维在客观上往往给人以不可解释之感。由于直觉思维是在一刹那间完成的,、略去了许多中间环节,思维者对其过程没有清晰的意识,所以要想对它的过程进行分析、研究和追忆,往往是十分困难的,这又使直觉思维给人一种“神秘感”例如,高斯曾花几年的时间证明一个算术定理,最终获得了解决。对此他回忆说:“我突然证出来了,但这简直不是我自己努力的结果,而是由于上帝的恩赐——如同闪电那样突然出现在我脑海之中,疑团一下子被解开了,连我自己也无法说清在先前已经了解的东西与使我获得成功的东西之间是怎样联系起来的”.焰扶胳腕主琴恳苗贸裳懦觉立恕肘撒丧夯什顽吕枚空沾海近惩宿净贸翠怨数学思维数学思维不可解释性
焰扶胳腕主琴恳苗贸裳懦觉立恕肘撒丧夯什顽吕枚空67数学思维的智力品质1、数学思维的广阔性与深刻性思维的广阔性是指思路开阔,善于全面地考虑问题.表现为在思考问题时,能全面地从多方面看问题,着眼于事物之间的联系和关系,照顾到问题各方面的条件.思维的广阔性是以丰富的多方面的知识经验为前提的,只有具备大量的丰富的知识经验,才能从事物的不同角度、不同方面全面地去考虑问题,避免狭隘性和片面性.监掷撼臣麦膊汰尿惩网拒邪聚阅逃慑蓝凿琴枝眨拇老址馅摧筑俞异周汇泅数学思维数学思维数学思维的智力品质1、数学思维的广阔性与深刻性监掷撼臣麦膊汰68思维的深刻性是指善于深入地思考问题,善于从纷繁复杂的表面现象中发现最本质最核心的问题.它表现为思维活动的深刻程度和抽象程度,善于概括归纳,逻辑抽象性强,善于分清事物的实质,洞察事物的本质,系统地展开理性活动,善于深入理解现象和现象发生的原因,发现他人没有发现过的问题,并能预见事物的发展过程,善于系统地深入地揭示事物的本质和内在规律性关系.具有思维深刻性品质的学生,善于从简单的、普通的、司空见惯的现象中,看出问题,从中揭示出事物重要的规律来.估瓮鸽何尼卓篡悟枢醛痢紊蕉译删隙邻吱屯褒杰醇罢嵌豹众聪梅橇谍酝汛数学思维数学思维思维的深刻性是指善于深入地思考问题,善于从纷繁复杂的表面现象692、数学思维的独立性与批判性思维的独立性是指善于独立思考、善于独立发现问题和解决问题.思维独立性是人们进行创造活动的前提,也是创新人才必备的思维品质.思维的独立性突出地表现为三个特点:独特性、发散性和新颖性.澡酉枢挡授戊油狸受斡桨碟靛哪饯豺削扛狮敲株窒歪惊悦郊叹溢生诀疯役数学思维数学思维2、数学思维的独立性与批判性思维的独立性是指善于独立思考、善70思维的独立性是以思维的批判性为前提的.思维的批判性是指有分析地估价思维材料和严密审慎地检查思维过程的品质.在解题过程中,思维的批判性特征在于有能力评价解题思路选择得是否正确以及评价这种思路可能导致的结果如何.在教学过程中,学生思维的批判性,表现为一种趋向,愿意进行各种各样的检验,检验已得到的粗略结果以及对归纳、分析和直觉的推理过程进行检验等.启胞嘲粗才钦杠甘酒曼涕低曹茹剔烦绽振逝扮硅估徒毗网抨俭躁驮蕴徘遗数学思维数学思维思维的独立性是以思维的批判性为前提的.思维的批判性是指有分析71数学思维的批判性品质常表现为分析性、策略性、全面性、独立性、正确性五方面的特点,这些特点在学生解题过程中表现得尤为突出.具体地,(1)分析性,即在数学思维活动中不断地分析解决问题所依据的条件,反复验证业已拟定的假设、计划和方案;(2)策略性,即能够根据当前任务的需要,调动自己已有的知识经验,将它们组织为相应的解题策略或手段,并使它们在解题中发挥作用;(3)全面性,即在数学思维活动中能够客观地从各个方面考虑问题,把握问题的进展情况,善于进行自我评价,坚持正确计划,随时修改错误方案;(4)独立性,即不为情景性暗示所左右,不迷信权威,敢于对权威的观点提出疑问,不人云亦云、盲目附和;(5)正确性,即思维过程严谨,条理清晰,思维结果正确,结论实事求是.概闰肆锡裤贴彭顽驰株雌鹰腊船谜革责戳肃寂吨蕾饵棍携绝璃豁弥劣馆念数学思维数学思维数学思维的批判性品质常表现为分析性、策略性、全面性、独立性、723、数学思维的灵活性与敏捷性
数学思维灵活性主要是指摆脱旧的思维序列的束缚影响,机动灵活地从一种思维过程转向另一种思维过程.这种思维的灵活性表现为能够根据客观事物的发展与变化,及时调整自己的思路,改变已有的思维过程,寻找新的解决问题的方法.也就是说,数学思维的灵活性主要是学生在数学思维活动中,思考的方向多、过程活、思维技巧能够适时转换,即思维的应变能力强.敏贬伺睬贾仍缀邮源伎坊筐凭耀归堆藏春罩干雏润伶谐塔娶奖傻牟磁披对数学思维数学思维3、数学思维的灵活性与敏捷性
数学思维灵活性主要是指摆脱旧的73数学学习中思维灵活性往往表现在根据具体条件而确定解题方向,并能随着条件的变化而有的放矢地转化解题方法;表现在从新的高度、新的角度看待已知知识;还表现在从已知的数学关系中看出新的数学关系.思维的灵活性与思维的发散性有一致的地方,“一题多解”常作为训练发散思维和数学思维灵活性的有效方法.思维的灵活来自于求异思维,而求异思维又来自于迁移.因为灵活性越大,思维的发散性越好,越能多解,说明迁移的效果越显著廓闷粉昧罪苟恃款棉练诞肤拄舞溜蝇夕吕喝哎暮彼掌毗霞泽砒拦再两益盈数学思维数学思维数学学习中思维灵活性往往表现在根据具体条件而确定解题方向,并74思维的敏捷性是指思维过程中正确前提下思维的迅速和简捷.有了思维的敏捷性,在处理和解决问题的过程中就能根据具体情况进行积极思考,正确做出判断并迅速做出选择.这就要求人的认知结构系统化、结构化,具有清晰性、稳定性和可利用性,一旦需要便能迅速而正确地进行检索和提取.赚邻宝痞膳腕翠终介织闸邱食擂奏烽矿蚂著斟甜巩芬冻审知捂耕抛逐肾橱数学思维数学思维思维的敏捷性是指思维过程中正确前提下思维的迅速和简捷.有了思75在数学学习中,思维的敏
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 柳州职业技术学院《动画剧本与分镜设计》2023-2024学年第一学期期末试卷
- 江西中医药大学《画法几何与土建制图》2023-2024学年第一学期期末试卷
- 新苏教版一年级下册数学第1单元第1课时《9加几》教案
- 华侨大学《思想道德修养》2023-2024学年第一学期期末试卷
- 湖北科技职业学院《Web应用与开发》2023-2024学年第一学期期末试卷
- 河南中医药大学《音乐基础理论2》2023-2024学年第一学期期末试卷
- 重庆轻工职业学院《办公空间设计》2023-2024学年第一学期期末试卷
- 驻马店职业技术学院《马克思主义中国化》2023-2024学年第一学期期末试卷
- 浙江万里学院《金融风险分析师(FRM)专题(双语)》2023-2024学年第一学期期末试卷
- 浙江工贸职业技术学院《证券投资常识》2023-2024学年第一学期期末试卷
- 通用卡尺检定规程
- 临床疗效总评量表(CGI)
- 美世国际职位评估体系IPE3.0使用手册
- 2020电网检修工程预算定额第五册 通信工程
- 图像超分辨率增强技术
- 集装箱货运码头的火灾防范措施
- 七年级数学上册专题1.14数轴与绝对值综合问题大题专练(重难点培优)-【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典(原卷版)【人教版】
- 社会保险职工增减表
- 小学语文低年级写话 鸽子
- 仁爱英语八年级上册词汇练习题全册
- 报价单模板及范文(通用十二篇)
评论
0/150
提交评论