vdocuments.mx-handbook-part-ii-theory-handbook-part-ii-theory-version-72-march-2017完整详细原版_第1页
vdocuments.mx-handbook-part-ii-theory-handbook-part-ii-theory-version-72-march-2017完整详细原版_第2页
vdocuments.mx-handbook-part-ii-theory-handbook-part-ii-theory-version-72-march-2017完整详细原版_第3页
vdocuments.mx-handbook-part-ii-theory-handbook-part-ii-theory-version-72-march-2017完整详细原版_第4页
vdocuments.mx-handbook-part-ii-theory-handbook-part-ii-theory-version-72-march-2017完整详细原版_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

HandbookpartII:TheoryVersion7.2/March2017GlobalMeteorologicalDatabaseVersion7SoftwareandDataforEngineers,PlanersandEducationTheMeteorologicalReferenceforSolarEnergyApplications,BuildingDesign,Heating&CoolingSystems,EducationRenewableEnergySystemDesign,AgricultureandForestry,EnvironementalResearch.MeteonormContentsMeteonormContentsContentsPARTII:THEORYRADIATION 1ReferencetimeinMeteonorm 1Worldwideinterpolationofmeteorologicaldata 2Methods 2Qualityoftheinterpolationonmonthlymeans 4Conclusions 4Thesolartrajectory 5Extraterrestrialsolarradiation 8Clearskyradiation 9UnderlyingbasicconceptsintheSoDa/ESRAclearskymodel 9Theestimationofclearskyradiation 10UsingtheSoDaLinketurbidityfactormappedresource 11Generationofglobalradiation 13Stochasticgenerationofglobalradiation 13Generationofdailyvalues 13NewMarkovtransitionmatrices(MTM) 15Validation 17Generationofhourlyvaluesfromdailyvalues 19Radiationoninclinedsurfaces 24Calculationofradiationcomponentswithgivenglobalhorizontalradiation 24PerezModel 24Validation 25Calculationofglobalanddiffuseradiationoninclinedsurfaces:"Perez-model" 28Albedo 29Validationoftheslopeirradiancemodel 29Modificationofradiationduetohorizon 31Modificationofdirectradiationbyskylineprofile 31Modificationofdiffuseradiationbyskylineprofile 316.7.4Conclusions 32Minutetimeresolutionradiationdata 33Minutetominutegenerationmodel 33Timeseriesminutemodel 33Hofmannminutemodel 33SkartveitandOlsethminutemodel 34Validation 34Minutetominutediffuseradiation 36Minutetominuteglobalradiationoninclinedplanes 38TEMPERATUREANDADDITIONALPARAMETERS 39Temperaturegeneration 39Introduction 39Estimationofdailymeanairtemperatures 39Stochasticgeneration 40Dailyminimumandmaximumtemperatures 42Derivingthetemperatureprofilefromtheirradianceprofile 43Validation 44Generationofsupplementaryparameters 47Dewpointtemperatureandrelativehumidity 47Validation 49Wet-bulbtemperatureandmixingratio 53Cloudcover 55Longwaveradiation 57Longwaveradiationemittedfromlevelground 57Longwaveradiationemittedbytheatmosphere 58Radiationbalance 58Conclusionsonlongwaveradiationmodelling 58Illuminance 59Wind 59Windspeed 59Winddirection 62Atmosphericpressure 64Heatingdegreedays 64Precipitation 64Dailyprecipitationvalues 64Hourlyvalues 65Validation 6Drivingrain 68Spectralradiation 69Sunshineduration 70Photosyntheticactiveradiation(PAR) 70PrecipitableWater 70Uncertaintymodel 71Methods 71Results 72Summaryofresults 75LITERATURE 76PAGE79MeteonormTheoryPAGE79MeteonormTheory7 Radiation7 RadiationInthischapter,thetheoreticalbasisofMeteonormispresented.Tokeepthelengthofthetextwithinreasonablelimits,someofthematerial(i.e.longerexplanations)hasbeenomitted.ReferencesaremadetothecontributioninSolarEnergyconcerninginterpolationandgenerationofradiationdata(Remundetal.,1998)andthetechnicalpublicationondatainterpolationpresentedatthe14thSolarEnergyPVConferenceinBarcelona(RemundandKunz,1997).ReferencetimeinMeteonormHourlyvaluesaredesignatedbytheendtimeoftheinterval.Thusthevaluefor14.00hoursreferstotheaveragevalueoftheintervalfrom13.00to14.00hours.Thecentralvalueofthisintervalis13.30hours.Thecomputerprogramcontainsaninternaltimereferenceinminutes,whichdefinesthepositionofthecenteroftheintervalinrelationtotheendtime.Intheexamplegivenhereitis-30minutes.Thereferencetimecanbechangedintheprogram.Alterationsare,however,onlynecessaryintwocases:Whenhourlyvalueswhosecentralvaluedoesnotcorrespondtothehalf-hourareimported.Whenhourlyvalueswhosecentralvaluedoesnotcorrespondtothehalf-houraretobegenerated.Exampleof1:Measuredvaluesareassumedtobeavailable.Themeasurementintervalextendedfromonehalf-hourtothenext(e.g.00:30to01:30).Thehourlyaveragewascalculatedbasedonthisintervalandstoredattheendtime(e.g.01:30).As,however,Meteonormonlyallowsintegerhourlyvalues(h)from1to24,itisonlypossibletousethefullhour(e.g.1)asendtimefortheinterval.Thecomputerprogrammustbeinapositiontodeterminebyhowmuchthegivenendtime(e.g.1)differsfromtheeffectivecentervalue(e.g.01:00).Asthemeasurementinterval(e.g.01:00)correspondsinthisexampletothegivenendtime(e.g.1),thereferencetimerequiredbyMeteonorm(IZRM=differencebetweentheeffectivecenteroftheintervalandthegivenendtimeinminutes)is0.Exampleof2:HourlyvaluesaretobegeneratedusingthereferencetimeformeasureddataoftheSwissMeteorologicalOffice(SMA).ThemeasurementintervaloftheSMAextendsfrom10minutesbeforethefullhourto20minutesbeforethenextfullhour(e.g.00:50to01:40),e.g.the10-minutevaluesareaveragedandstoredattheendtime(e.g.01:40).Thecenteroftheintervalis10minutesafterthefullhour(e.g.01:10).TheendtimeoutputintheMeteonormcomputerprogramcorrespondstothefullhour(e.g.1).Theeffectivecenteroftheinterval(e.g.01:10)differsinthiscaseby10minutesfromthegivenendtime(e.g.1).Meteonormthusrequires10asreferencetime.WorldwideinterpolationmeteorologicaldataForthesimulationofsolarenergysystems,meteorologicaldatafromallpartsoftheworldisneeded.Formanyregions,measureddatamayonlybeappliedwithinaradiusof50kmfromweatherstations.Thismakesitnecessarytointerpolateparametersbetweenstations.Themethodgivenbelowenablesthedatatobeinterpolatedandmonthlyvaluestobeobtainedforalmostallpointsoftheglobe.MethodsTocalculatemeteorologicaldataforanydesiredlocationintheworld,aninterpolationproceduremustbeapplied.Forglobalradiation,thisisdonewitha3-Dinversedistancemodel(Shepard’sgravityinterpolation),basedontheintroductionbyZelenkaetal.(1992)(IEATask9),withadditionalNorth-Southdistancepenalty(WaldandLefèvre,2001),where:GhxwiGhxizizxgvwi1ii2wkwithidiRfordiR

(7.2.1)wi0otherwiseiNSixd2f22iNSix

z2fNS10.3ixisinx2wi:weightiwk:sumofoverallweightsR:searchradius(max.2000km)v:verticalscalefactors:horizontal(geodetic)distance[m]zx,zi:altitudesofthesites[m]i:gv:Numberofsites(maximum6)verticalgradienti,x:latitudesofthepointsTheverticalscalefactorvandtheverticalgradientgvaredependingontheparameter(Tab.7.2.1).Tab.7.2.1:MonthlyverticalscalefactorsvandgradientsgvforinterpolationParametervgvGh1500.0Ta4000.001Td4000.002FF3000.0RR2000.0Rd3000.0Sd4000.002Theotherparameters(temperature,wind,humidityandrain)canbeinterpolatedusingsimilarprocedures.TheverticalfactorvinEqn.7.2.1isadjustedtogetthesmallestdeviations.Forinterpolatingtemperatureandwinddata,furtherinformationonlocaleffectsisneeded.Theinfluenceoftheseashoreisconsideredinthefollowingway:increasedwindspeed(1m/s)forallmonths,increasedtemperatureinwinter,andlowertemperatureinsummer(notappliedtotropicalregions)(Tab7.2.2).Tab.7.2.2:Monthlycorrectionfactorsfortemperatureforlocalfeaturesin°C(slightlymodifiedsiamodel)FeatureZoneJanFebMarAprilMayJuneJulyAugSepOctNovDecopenA0.00.00.00.00.00.00.00.00.00.00.00.0depressionA-1.6-0.7-0.5-0.4-0.4-0.3-0.3-0.2-0.2-0.4-0.7-1.2coldhollowA-3.9-2.8-1.7-0.4-0.4-0.3-0.3-0.2-0.2-1.0-2.2-3.8sea/lakeA-0.5-0.7-0.7-0.4-0.71.1cityA1.11.01.2S-facinginclineS-facinginclineNS2.91.03.7W/E-facinginclineW/E-facinginclineNSvalleyvalleyNS0.21.00.21.00.11.0*S-facingincline.Forsouthernhemisphere:N-facingincline!Zone: N:Regionsnorthof45°Norsouthof45°S A:General S:Regionssouthof45°Nandnorthof45°SFeature: Depression:Smallandmediumdepressionswithformationofcoldhollows,particularlyinwinter,orstronglyshaded.Mainlyconfinedtomountainousregions.Coldhollow:IncludestheextensivecoldhollowsofcentralAlpinevalleyssuchasinupperEngadineinSwitzerland.Lake:Vicinityofseaorlargerlakes(>100km2).Sitenotmorethan1kmfromtheshore.City:Applicabletocentersoflargercitieswithover100,000inhabitants.(SeealsoFig.2.2.1andTab.2.2.1)Tab.7.2.3:Monthlycorrectionfactorsforwindspeedinm/sdependingonterrain.SimplifiedWASPmodel(RisoeNationalLaboratory,1990).Terrain Correctionfactor(applicabletoallmonthsofyear)shelteredterrain(cities) -1.0open 0.0sea/lake 1.0Summits(hillsandridges) 3.0QualityoftheinterpolationonyearlymeansFollowinginterpolation,theaccuracyoftheresultswasfoundbycrosscorrelationmethodtobeasfollows:Interpolationofglobalradiation:meanbiasederror(mbe):0W/m2(0%);rootmeansquareerror(rmse):12W/m2(6.9%)(Tab.7.2.4).Fortemperatureinterpolation,thembewas0.0°Candthermse1.2°C.Usingthenearestneighborinterpolationmethodasabenchmark,thermseforglobalradiationwouldbe14%andthatfortemperature3.4°C.Tab.7.2.4:Qualityofthegroundbasesinterpolationofyearlyvalues.Gh[%]Ta[°C]Td[°C]FF[m/s]RR[%]Rd[d]Sd[%]TimeperiodAll2000-092000-092000-091961-901961-901961-90Europe6.31.00.71.223259.6WesternEurope5.91.00.71.2242510.5Switzerland6.71.00.51.2252710.3Germany4.11.00.41.118226.6France1.217307.4Asia1.031217.6Japan0.914147.6Africa1.028517.8NorthAmerica4.91.00.60.818268.4SouthAmerica1.0294216.0Australia/Ocean.6.0253616.0World1.025289.1ConclusionsWiththeMeteonormVersion7database,itispossibletosimulatesolarenergysystemsinallpartsoftheworldonaconsistentbasis.Theinterpolationerrorsaremostlywithinthevariationsofclimatefromoneyeartothenext.Thequalityoftheinterpolationofallparameterswasimprovedwiththeadditionalstationsandqualitychecksofversion7.2.Forradiationfurtherimprovementsweremadeusinggroundandsatellitedata(Chapter3.1.2),whicharenotincludedinthetestabove(butinchapter8.3).SolartrajectoryInsolarenergyapplications,theknowledgeofthegeometricalparametersofthesolartrajectoryisnecessary.Sinceversion5.0(2003)asetofalgorithmsbasedontheEuropeanSolarRadiationAtlasESRA(2000)isused.Inthefollowingformulae,anglesaregiveninradians[rad]whennototherwisestated.Viewedfromafixedpointontheearth'ssurface,thesolarpositionisdefinedbytwoangles(Figs.7.3.1and7.3.2):Solaraltitudehs:Anglebetweenhorizontalplaneandlinejoiningthecentersoftheearthandthesun(solarelevation).Solarazimuths:Anglebetweentheprojectionofthestraightlinejoiningthecentersoftheearthandthesunonthehorizontalplaneandduesouth.s>0inpositivesolardirection,s<0innegativesolardirection.sunsunzenithNWhssPSEFig.7.3.1: SolarpositionviewedfromapointPontheearth'ssurfaceZ:Z:axisofrotationzenithearthPzP:pointonearth‘ssurface:Latitudezzenithangle-hsdeclinations:hourlyangleYssunXFig.7.3.2: Solarposition(declination,zenithangleandhourlyangle)Thetwoanglesmaybeexpressedasafunctionoflatitude(),solardeclination()andhourlyangle(s)(7.3.1to7.3.4).scnnnssss

(7.3.1)cncsns

(7.3.2)s coshs Thedeclination()istheanglebetweentheequatorialplaneandthestraightlinejoiningthecentersoftheearthandthesun.Itisdeterminedbythelawsgoverningthesolartrajectory,andcanbeexpressedasgiveninEqn.7.3.3aandb(Bourges,1985).0.00649790.405906sint0.0020054sin2t0.002988sin3tt2twith

(7.3.3a)t0dyt1t10.52n002365.2422n0yINTy4

(7.3.3b): declination[rad] dy: dayofyeary: year λ: longitudeINT standsforintegerpartoftheargumentandyforyearanddyfordaynumberoftheyear.Fortheequinox,thedeclinationiszero,forthesummersolstice+23.4°andforthewintersolstice-23.4°.Itisthisvariationwhichisresponsiblefortheseasonsoftheyear.Thehourlyangle(s)isalsoknownassolartime(ST)inradians(7.3.4).𝜔𝑠

=(𝑆𝑇−12)𝜋

(7.3.4)Theastronomicaldaybeginsandendswhenthecenterofthesun'sdiskispreciselyonthe(flat)horizon.Thecalculationoftheanglesofsunriseandsunset(ss)ismadeusingEqn.7.3.5,obtainedbysolvingEqn.7.3.1withhs=0.=𝑎𝑟𝑐𝑐𝑜𝑠[−tan𝛼∙tan𝛿] (7.3.5)AsanaddedfeatureinMeteonormVersion6.0theradiationisalsomodeledforthosehours,whentheelevationispositiveatthebeginningortheendofthehourlytimeperiod,butnotatthecentre.Eitherthebeginortheend(theonewithpositiveelevation)istakenassolarelevationforthosehours.Forthosehoursthepartofthetime,whenthesunisabovetheastronomichorizoniscalculated.Thegeneratedradiationvaluesaremultipliedwiththispart.Generallytheradiationparametersareverysmallforthosehours.DimensionlessquantitiesFormanychainlinkstheclearnessindexisused.ThisindexisdefinedbyMonthlyKTm

GhmGh0mKTd

GhdG

(7.3.6)0dhourlyKTh

GhG0OpticalairmassIncalculatingtheradiationontheearth'ssurface,theopticalmassmisrequired.Thisisdefinedastherelativethicknessoftheairpathtraversedbyasun'sraywhenitreachestheearth'ssurface.Forverticalimpingementofthesunraysatsealevel,massumesthevalue1.Thevalueoftheopticalairmassdeclineswithincreasingaltitude,andincreaseswithdecliningsolaraltitude(Eqn.7.3.7)Thesolaraltitudeangleisfirstcorrectedforrefraction.mpp0

snhstrue278hstrue5.6364pp0

.2

(7.3.7)refrhstruehshsrefrhsrefr0.061359

hshs2128.9344hs277.3971hs2z:Heightabovesealevel[m] hs:Solaraltitudeangle[rad]ExtraterrestrialsolarradiationOutsidetheearth'satmosphere,thesolarradiationintensityis1'366W/m2(I0)(7.4.1).Asurfaceexposedtothesuncanonlyreceivethisvalueifitisplacednormaltothedirectionofradiation.Anydeviationfromthisdirectionleadstoareductionofincidentradiation.Inthecaseofasurfacelyingoutsidetheearth'satmospherethatisparalleltothehorizontalplane,theradiationisdescribedasextraterrestrialhorizontalsolarradiation(G0).Thisradiationcorrespondstothemaximumpossibleradiationwhichwouldoccurattheearth'ssurfaceifitwereunhinderedbytheatmosphereandthehorizon.GoGoatmosphereI0hsGhmaxsun earthequatorFig.7.4.1: Extraterrestrialsolarradiation(G0)andmaximumradiationforclearsky(Ghmax).Usingtheequationforradiationoutsidetheearth'satmosphereandforthesolarangle(hs)(7.3.1),theextraterrestrialhorizontalsolarradiationcanbecalculated(7.4.1)(SfeirandGuarracino,1981).G0I0sinsI01366W/m210.0334

0.048869

(7.4.1)cos

365.25 whereisthecorrectiontoactualsolardistanceatanyspecifictimeintheyear.dy:dayofyear :SolaraltitudeangleClearskyradiationThemaximumradiationisdefinedastheradiationoccurringondayswithaclear,cloudlesssky.Notonlytheglobalbutalsothedirectanddiffuseradiationsareofinterest.Foracloudlesssky,theglobalradiationtakesmaximumvalues.Themaximumglobalradiationcalculatedherecorrespondstothegreatestpossiblevalueofglobalradiationperhouratthespecifiedaltitude.Forarestrictedperiod,theglobalradiationcanattainveryhighvaluesevenwithacloudysky.Thisoccurswhensunlight,havingpenetratedthroughintensivelyreflectingclouds,impingesdirectlyontheearth'ssurface.Themaximumglobalradiationisstronglyaltitudedependent,andincreaseswithincreasingheightabovesealevel.Attheupperedgeoftheatmosphere,ittakesthevalueoftheextraterrestrialglobalradiation.Sinceversion5.0ofMeteonorm,anewsetforclearskyradiationisused.TheEuropeanUnionFP5frameworkprojectSoDastudies(RemundandPage,2002)showedthattheuseofaslightlyenhancedESRAclearskyirradiancemodel(Rigollieretal.,2000)deliversbestresults.Thefollowingchaptersareadirectresultofthesestudies.UnderlyingbasicconceptsintheSoDa/ESRAclearskymodelTheclarityoftheskyaboveanysitehasanimportantimpactontheintensityofboththebeamirradi-anceandtheamountofscattereddiffuseradiationundercloudlessskyconditions.Acapacitytoaddresstheseissuesiscriticalinachievingsoundirradiationestimates.Energyislostfromthesolarbeambythreeroutes:molecularscatteringbythegasesintheatmosphere.spectralabsorption,forexamplebygaseouswatervapour,primarilylocatedintheloweratmosphere,andbyozone,whichislocatedprimarilyinthestratosphere,andalsobythepermanentatmosphericgaseslikecarbondioxide.scatteringandabsorptionduetonaturalaerosolsandmanmadeaerosolsintheatmosphere.Theelevationofthesiteabovesealevelreducestheeffectiveatmosphericpathlengthandhastobetakenintoaccount.Theamountofaerosolpresentintheatmosphereandtheamountofwatervapourpresenttypicallydecreaseexponentiallywithincreasesinsolaraltitude.Themodelingprocesshastoallowforthis.Thedetailedassessmentoftheseimpactsiscomplex.Thereareadvantagesforpracticaluserstobeabletoexpresstheimpactsofvariousfactors,likevariationsatmosphericwatervapourcontentsandaerosols,inasingleeasilycomprehensibleindex.TheESRA/SoDaclearskyresourceisbasedontheuseoftheconceptoftheLinketurbidityfactortoachievethissimplicity.TheguidanceofKasten(1996)wassoughtintheevolutionofthepreciseformulationadopted.TheLinketurbidityfactoratheightzmetresabovesealevel,TL(z),wasobjectivelydefinedbyKasten(1983)as:RTLz1DzzR

(7.5.1)whereR(z)istherelativeopticalthicknessrelatingtoRayleighscatteringbythegaseousmoleculesintheatmosphereandozoneabsorptionandD(z)istherelativeopticalthicknessassociatedwithaerosolextinctionandgaseousabsorptionotherthanozoneinthestratosphere.FurtherelaborationmaybefoundinTerzenbach(1995).Note:insomerecentscientificstudiesthegaseousabsorptionbythepermanentgasesintheatmospherehasbeenincorporatedwithinR(z).ThisproducesadifferentdefinitionoftheLinketurbidityfactor.Theactualpathlengththroughtheatmosphereisdescribedquantitativelyusingtheconceptoftherelativeopticalairmass.TherelativeopticalairmassatsealevelcanbecalculatedwithEqn.7.3.7,bysettingp=p0.R(z)andD(z)arebothfunctionsofairmassbecausewearedealingwithbroadbandradiation(asopposedtomonochromaticradiation).Thebeamirradiancenormaltothebeamisgivenby:BnI0

expmTz

[W/m2] (7.5.2)LRInrecentyearsseveralscientistshavewidenedtheconceptofRayleighopticalthicknesstoincludeabsorptionbyarangeofabsorbinggasesthatoccurnaturallyinthecleandryatmospherelikecarbondioxide,oxygen,andcertainoxidesofnitrogen.ThisprocessincreasesthevalueofR(z),thedenomi-natorinEqn.7.5.1,andsoyieldslowervaluesofthecalculatedturbidityfactorfromirradianceobservations.LRTheSoDa/ESRApolicyinthefaceoftheserecentchangeshasbeentoretainaconstantquantitativedefinitionoverhistorictimeoftheLinketurbidityfactor.ThecompromiseadoptedtakesadvantageofrecentimprovedknowledgeabouttheeffectofairmassontheRayleighopticalthickness.TheoldRayleighopticalthicknessvaluesarealignedwiththenewclearskyopticalthicknessvaluesatairmass2.Thisalignmentisdonebymakingadefinedmatchatairmass2betweenthenewalgorithmsandtheold,whichhavebeenmaintainedasthereferenceforLinketurbidityfactorinputs.Thisalignmentyieldsanadjustmentfactorof0.8662neededtoachievethismatchwhichisincludedinEquation7.5.3.ThebeamirradiancenormaltothebeamiscalculatedusingthestandardizedoriginalKastenairmass2Linketurbidityfactor,as:BnI0

mT

R

[W/m2] (7.5.3)LwhereTListheairmass2LinketurbidityfactorasdefinedbyKasten'sformulationandmistherelativeopticalairmasscorrectedforstationpressure.LKastenhasprovidedthefollowingguidelinefortypicalvaluesofTLinEurope(Tab.7.5.1).Tab.7.5.1: TypicalvaluesofTLinEurope.Verycleancoldair TLK=2Moistwarmorstagnatingair TLK=4to6 Cleanwarmair TLK=3Pollutedair TLK>6TheestimationofclearskyradiationForequationsofglobalclearskyradiationwerefertothepublicationofRigollieretal.(2000),chapteraboutirradiancemodel.Fordiffuseclearskyradiationthefollowingcorrectionsareused:TheformulationofthehorizontalsurfacediffuseradiationirradiancealgorithminESRA(2000)andRigollieretal.(2000)didnotmakeanyallowanceforvariationsinthesiteatmosphericpressurethoughsuchacorrectionwasmadeintheassociatedbeamestimates.FurtherinvestigationhasshownthedesirabilityofincludingthepressurecorrectionintheESRAdiffusealgorithm.L 0Setting(T*L 0DcI0

s

Trd

*

[W/m2] (7.5.4)LTrd(TL*)isthediffusetransmittancefunctionwhichrepresentsthetransmittancewiththesunatthezenith,ItiscalculatedusingEqn.7.5.5.LTT*302302T*704T*2rdL L L

(7.5.5)Fd(s)isthediffusesolarelevationfunctionwhichadjuststhediffusezenithtransmittanceTrd(TL*)totheactualsolarelevationangles.ItiscalculatedusingEqn.7.5.6,wheresisinradians.FyAAsinAsin2

(7.5.6)d s 0 1 s 2 sThecoefficientsA0,A1andA2arecalculatedusingEquations7.5.7:0LLA31T*8T*20LL1LLA05T*1T*21LL

(7.5.7)2LLA51T*9T*22LLForregionsbelowapproximately500m,thechangesduetothenewformulationaresmall.InSwitzerlandtheclearskydiffuseradiationat1'000ma.s.l.isloweredby10%andtheglobalclearskyisloweredbyabout2.5%bythischange.At2'500mtheclearskydiffuseisloweredby30%andtheglobalisloweredbyabout3%(thediffusepartformsasmallerproportionoftheclearskyglobalirradiationathighersiteelevations).TheoutcomeofthevalidationinRigollieretal.(2000)isthereforenottouchedbythechange,asonlystationsbelow500mwereusedinthevalidation.LinketurbidityLinketurbidity(TL)isusedforinputoftheESRAclearskymodel.Forversion7.2anewturbidityclimatologyhasbeenincluded.It’sbasedonthedatabaseofSolarConsultingServices(Gueymard,2012)andincludesgroundandsatellitemeasurements(MODISandMISR)oftheperiod2000-2015.Inoppositiontothedatausedbetweenversion6and7.1noneedforfurtherreductionofTLdataisneeded.Highturbidityvaluesarereducedmorethanlowervalues.FormeanconditionsatmidlatitudesandindustrializedregionslikeEuropewithLinketurbidityofabout5,thevalueisloweredby20%toavalueof4.Additionallyitwasdetected,thatwithvariedturbidityvaluestheobserveddistributionofclearskyconditionscouldbematchedbetter.Alsomodelsproducingbeamradiationgavebetterresults,whenusingvariedturbidities.BydefaultthedailyLinketurbidity(TLd)valuesarevariedstochastically(optionallyitcansetconstant)(Eqn.7.5.8).TLdd1TLdd1r10.7TL0.5TL1120.51

(7.5.8)rN0,TL

TLd

L

1.21: FirstorderautocorrelationLm:tandrddeiationofyprturbatiosdeendngonmothlymensofTL: Standarddeviationofthenormallydistributedrandomfunction;theconstanthasbeenenhancedfrom0.1to0.25forversion7.2.r: Normallydistributedrandomvariablewithexpectedvalue0andstandarddeviation.WorlddigitalmapsoftheLinketurbidityfactorhavebeenpreparedona0.5”gridasabasicresource(Fig.7.5.1).Fig.7.5.1: YearlylongtermmeanofLinketurbidityfactor(period2000–2015).ThegivenTLvaluesarecoupledtothemeanaltitudeofthepixels.Inthesoftware,theTLvaluesareadoptedtotherealaltitudeofthesiteswiththefollowingequation:L1Lz2z21

0

(7.5.9)GenerationofglobalradiationTomeettodayneeds,monthlyaveragedataisnolongersufficient,andmanydesigncodescallforhourlyorminutedata.However,sincetheinterpolationofhourlyvaluesatarbitrarylocationsisextremelytimeconsuming(onlyfeasibleusingsatellitedata),andnecessitatesextensivestoragecapacity,onlyinterpolatedmonthlyvaluesatnodalpointsarestored.Inordertogeneratehourlyvaluesatanydesiredlocation,stochasticmodelsareused.Thestochasticmodelsgenerateintermediatedatahavingthesamestatisticalpropertiesasthemeasureddata,i.e.averagevalue,variance,andcharacteristicsequence(autocorrelation).Thegenerateddataapproximatesthenaturalcharacteristicsasfaraspossible.Recentresearchshowsthatdatageneratedinthiswaycanbeusedsatisfactorilyinplaceoflong-termmeasureddata(Gansleretal.,1994)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论