安徽合肥八中2023届高一上数学期末统考模拟试题含解析_第1页
安徽合肥八中2023届高一上数学期末统考模拟试题含解析_第2页
安徽合肥八中2023届高一上数学期末统考模拟试题含解析_第3页
安徽合肥八中2023届高一上数学期末统考模拟试题含解析_第4页
安徽合肥八中2023届高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

15/152022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如果,那么A. B.C. D.2.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.3.已知函数的图象与直线有三个不同的交点,则的取值范围是()A. B.C. D.4.函数y=ln(1﹣x)的图象大致为()A. B.C. D.5.已知函数满足,则()A. B.C. D.6.当前,全球疫情仍处于大流行状态,多国放松管控给我国外防输入带来挑战,冬季季节因素导致周边国家疫情输入我国风险大大增加.现有一组境外输入病例数据:x(月份)12345y(人数)97159198235261则x,y的函数关系与下列哪类函数最接近()A. B.C. D.7.已知,则函数与函数的图象可能是()A. B.C. D.8.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.9.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.10.已知函数,若关于的方程有8个不等的实数根,则的取值范围是A. B.C. D.11.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.12.若函数的最大值为,最小值为-,则的值为A. B.2C. D.4二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若则______14.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________15.已知为奇函数,,则____________16.若,,.,则a,b,c的大小关系用“”表示为________________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设全集,集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,求实数的取值范围.18.集合A={x|},B={x|};(1)用区间表示集合A;(2)若a>0,b为(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范围.19.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.20.已知全集,集合,,.(1)若,求;(2)若,求实数a的取值范围.21.如图,在直三棱柱ABC-A1B1C1中,三角形ABC为等腰直角三角形,AC=BC=2(1)求证:AC1//(2)二面角B122.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】:,,即故选D2、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A3、D【解析】作出函数的图象,结合图象即可求出的取值范围.【详解】作函数和的图象,如图所示,可知的取值范围是,故选D.4、C【解析】根据函数的定义域和特殊点,判断出正确选项.【详解】由,解得,也即函数的定义域为,由此排除A,B选项.当时,,由此排除D选项.所以正确的为C选项.故选:C【点睛】本小题主要考查函数图像识别,属于基础题.5、B【解析】根据二次函数的对称轴、开口方向确定正确选项.【详解】依题意可知,二次函数的开口向下,对称轴,,在上递减,所以,即.故选:B6、D【解析】根据表中数据可得每月人数的增长速度在逐月减缓,即可选出答案.【详解】计算可知,每月人数增长分别为62,39,37,26,增长速度在逐月减缓,符合对数函数的特点,故选:D7、B【解析】条件化为,然后由的图象确定范围,再确定是否相符【详解】,即.∵函数为指数函数且的定义域为,函数为对数函数且的定义域为,A中,没有函数的定义域为,∴A错误;B中,由图象知指数函数单调递增,即,单调递增,即,可能为1,∴B正确;C中,由图象知指数函数单调递减,即,单调递增,即,不可能为1,∴C错误;D中,由图象知指数函数单调递增,即,单调递减,即,不可能为1,∴D错误故选:B.【点睛】本题考查指数函数与对数函数的图象与性质,确定这两个的图象与性质是解题关键.8、C【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C9、D【解析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D10、D【解析】画出函数的图象,利用函数的图象,判断的范围,然后利用二次函数的性质求解的范围【详解】解:函数,的图象如图:关于的方程有8个不等的实数根,必须有两个不相等的实数根且两根位于之间,由函数图象可知,.令,方程化为:,,,开口向下,对称轴为:,可知:的最大值为:,的最小值为:2故选:【点睛】本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力,属于中档题11、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A12、D【解析】当时取最大值当时取最小值∴,则故选D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】14、【解析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.15、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.16、cab【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【详解】,即;,即;,即,综上可得,故答案为:.【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)①;②;③.【解析】(1)将代入集合,求出集合和,然后利用交集的定义可求出集合;(2)选择①,根据得出关于实数的不等式组,解出即可;选择②,由,可得出,可得出关于实数的不等式组,解出即可;选择③,求出集合,根据可得出关于实数的不等式,解出即可.【详解】(1)当时,,,,因此,;(2),.选择①,,则或,解得或,此时,实数的取值范围是;选择②,,,则,解得,此时,实数的取值范围是;选择③,,或,解得或,此时,实数的取值范围是.综上所述,选择①,实数的取值范围是;选择②,实数的取值范围是;选择③,实数的取值范围是.【点睛】本题考查交集与补集的混合运算,同时也考查了利用集合的包含关系求参数的取值范围,考查运算求解能力,属于中等题.18、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,将b代入并因式分解,即可得解;(3)由题意知A⊆B,对a分类讨论即求得范围【详解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,当且仅当t=5时取等号,故即为:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A⊆B,而可得:a=0时,化为:2x﹣b<0,解得但不满足A⊆B,舍去a>0时,解得:或但不满足A⊆B,舍去a<0时,解得或∵A⊆B∴,解得∴a、b的取值范围是a∈,b∈(-4,0).【点评】本题考查了集合运算性质、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.19、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在上的最小值为.因为,所以当时,,解得或(舍去);当时,,不合题意,舍去.综上可知,.【点睛】本题考查函数的奇偶性应用和单调性的证明,考查复合函数的最值,用换元方法,将问题化归为二次函数函数的最值,属于较难题.20、(1)(2)【解析】(1)时,分别求出集合,,,再根据集合的运算求得答案;(2)根据,列出相应的不等式组,解得答案.【小问1详解】当时,,,所以,故.【小问2详解】因为,所以,解得.21、(1)见解析(2)45°【解析】1设BC1∩B1C=E,连接ED,则2推导出CD⊥AB,BB1⊥CD,从而CD⊥平面ABB1A1,进而CD⊥B1解析:(1)在直三棱柱ABC-A1B则E为BC1的中点,连接∵D为AB的中点,∴ED//AC,又∵ED⊂平面CDB1,AC∴AC1//(2)∵ΔABC中,AC=BC,D为AB中点,∴CD⊥AB,又∵BB1⊥平面ABC,CD⊂∴BB1⊥CD,又AB∩BB1∵B1D⊂平面ABB1A1,AB⊂平面∴∠B1DB∵ΔABC中,AB=2,∴BD=1,RtΔB1BD中,∴二面角B1-CD-B22、.【解析】设送报人到达的时间为X,小王离家去工作的时间为Y,(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,求出其面积,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}

求出其面积,根据几何概型的概率公式解之即可;试题解析:如图,设送报人到达的时间为,小王离家去工作的时间为.(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,面积为,事件表示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论