河南省商丘市重点中学2022年高一数学第一学期期末考试模拟试题含解析_第1页
河南省商丘市重点中学2022年高一数学第一学期期末考试模拟试题含解析_第2页
河南省商丘市重点中学2022年高一数学第一学期期末考试模拟试题含解析_第3页
河南省商丘市重点中学2022年高一数学第一学期期末考试模拟试题含解析_第4页
河南省商丘市重点中学2022年高一数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11/122022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则下列结论不正确的是()A. B.是的一个周期C.的图象关于点对称 D.的定义域是2.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限3.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是()A.6 B.7C.8 D.94.设函数,若,则的取值范围为A. B.C. D.5.已知是减函数,则a的取值范围是()A. B.C. D.6.函数的零点的个数为A. B.C. D.7.已知函数y=xa,y=xb,y=cx的图象如图所示,则A.c<b<a B.a<b<cC.c<a<b D.a<c<b8.已知一几何体的三视图,则它的体积为A. B.C. D.9.设向量,,,则A. B.C. D.10.在下列各图中,每个图的两个变量具有线性相关关系的图是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)二、填空题:本大题共6小题,每小题5分,共30分。11.若函数,则______12.若函数在区间上为减函数,则实数的取值范围为________13.已知函数的定义域和值域都是集合,其定义如表所示,则____________.x01201214.已知函数,,则________15.已知函数,若时,恒成立,则实数k的取值范围是_____.16.命题“,”的否定是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,平面平面为等边三角形,且分别为的中点(1)求证:平面;(2)求证:平面平面;18.已知幂函数的图像经过点(),函数为奇函数.(1)求幂函数的解析式及实数a的值;(2)判断函数f(x)在区间(-1,1)上的单调性,并用的数单调性定义证明19.已知动圆经过点和(1)当圆面积最小时,求圆的方程;(2)若圆的圆心在直线上,求圆的方程.20.已知函数(1)若,求a的值;(2)判断函数的奇偶性,并证明你的结论;(3)若对于恒成立,求实数m的范围21.已知是定义在上的奇函数.(1)求实数和的值;(2)根据单调性的定义证明:在定义域上为增函数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】画出函数的图象,观察图象可解答.【详解】画出函数的图象,易得的周期为,且是偶函数,定义域是,故A,B,D正确;点不是函数的对称中心,C错误.故选:C2、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题3、B【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可【详解】解:对任意,都有,为函数的最大值,则,,得,,在区间,上不单调,,即,即,得,则当时,最小.故选:B.4、A【解析】根据对数函数的性质单调递增,,列出不等式,解出即可.【详解】∵函数在定义域内单调递增,,∴不等式等价于,解得,故选A.【点睛】本题主要考查了对数不等式的解法,在解题过程中要始终注意函数的定义域,也是易错点,属于中档题.5、D【解析】利用分段函数在上单调递减的特征直接列出不等式组求解即得.【详解】因函数是定义在上的减函数,则有,解得,所以的取值范围是.故选:D6、B【解析】略【详解】因为函数单调递增,且x=3,y>0,x=1,y<0,所以零点个数为17、A【解析】由指数函数、幂函数的图象和性质,结合图象可得a>1,b=12,【详解】由图象可知:a>1,y=xb的图象经过点4,2当x=1时,y=c∴c<b<a,故选:A【点睛】本题考查了函数图象的识别,关键掌握指数函数,对数函数和幂函数的图象和性质,属于基础题.8、C【解析】所求体积,故选C.9、A【解析】,由此可推出【详解】解:∵,,,∴,,,,故选:A【点睛】本题主要考查平面向量垂直的坐标表示,考查平面向量的模,属于基础题10、D【解析】由线性相关的定义可知:(2)中两变量线性正相关,(3)中两变量线性负相关,故选:D考点:变量线性相关问题二、填空题:本大题共6小题,每小题5分,共30分。11、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:12、【解析】分类讨论,时根据二次函数的性质求解【详解】时,满足题意;时,,解得,综上,故答案为:13、【解析】根据表格从里层往外求即可.【详解】解:由表可知,.故答案为:.14、【解析】发现,计算可得结果.【详解】因为,,且,则.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现是关键,属于中档题.15、【解析】当时,,当时,,又,如图所示:当时,在处取得最大值,且,令,则数列是以1为首项,以为公比的等比数列,∴,∴,若时,恒成立,只需,当上,均有恒成立,结合图形知:,∴,∴,令,,当时,,∴,∴,当时,,,∴,∴最大,∴,∴.考点:1.函数图像;2.恒成立问题;3.数列的最值.16、.【解析】全称命题的否定:将任意改为存在并否定原结论,即可知原命题的否定.【详解】由全称命题的否定为特称命题,所以原命题的否定:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)因为分别为的中点,所以,由线面平行的判定定理,即可得到平面;(2)因为为的中点,得到,利用面面垂直的性质定理可证得平面,由面面垂直的判定定理,即可得到平面平面【详解】(1)因为、分别为、的中点,所以.又因为平面,所以平面;(2)因为,为的中点,所以,又因为平面平面,平面平面,且平面,所以平面,平面,平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直18、(1);(2)在(-1,1)上单调递增,证明见解析【解析】(1)首先代点,求函数的解析式,利用奇函数的性质,求,再验证;(2)根据函数单调性的定义,设,作差,判断符号,即可判断函数的单调性.【小问1详解】由条件可知,所以,即,,因为是奇函数,所以,即,满足是奇函数,所以成立;【小问2详解】由(1)可知,在区间上任意取值,且,,因为,所以,,所以,即,所以函数在区间上单调递增.19、(1)(2)【解析】(1)以为直径的圆即为面积最小的圆,由此可以算出中点坐标和长度,即可求出圆的方程;(2)设出圆的标准方程,根据题意代入数值解方程组即可.【小问1详解】要使圆的面积最小,则为圆的直径,圆心,半径所以所求圆的方程为:.【小问2详解】设所求圆的方程为,根据已知条件得,所以所求圆的方程为.20、(1)(2)奇函数,证明见解析(3)【解析】(1)代入,得到,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算的数量关系,由此完成证明;(3)将已知转化为,求出在的最小值,即可得解.【小问1详解】,,即,解得,所以a的值为【小问2详解】为奇函数,证明如下:由,解得:或,所以定义域为关于原点对称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论