版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知定义在R上的函数的图象是连续不断的,且有如下对应值表:x123453那么函数一定存在零点的区间是()A. B.C. D.2.定义在实数集上的奇函数恒满足,且时,,则()A. B.C.1 D.3.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.4.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B.C. D.5.将函数的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A. B.C. D.6.若函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|)的部分图象如图所示,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则g(x)=()A.2cosx B.2sinxC.2cosx D.2sinx7.从含有两件正品和一件次品的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为()A. B.C. D.8.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.9.函数y=ax﹣2+1(a>0且a≠1)的图象必经过点A.(0,1) B.(1,1)C.(2,0) D.(2,2)10.若,则tanθ等于()A.1 B.-1C.3 D.-3二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知正实数满足,则当__________时,的最小值是__________12.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.13.设集合,,若,则实数的取值范围是________14.不等式的解集为_____15.已知函数是定义在上的奇函数,当时,,则当时____三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,在平面直角坐标系中,角的始边与轴的非负半轴重合,终边在第二象限且与单位圆相交于点,过点作轴的垂线,垂足为点,.(1)求的值;(2)求的值.17.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.18.已知,,计算:(1)(2)19.已知(1)化简;(2)若=2,求的值.20.设直线l的方程为.(1)若l在两坐标轴上的截距相等,求直线l的方程(2)若l在两坐标轴上的截距互为相反数,求a.21.已知奇函数.(1)求值;(2)若函数的零点是大于的实数,试求的范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】利用零点存在性定理判断即可.【详解】则函数一定存在零点的区间是故选:B【点睛】本题主要考查了利用零点存在性定理判断零点所在区间,属于基础题.2、B【解析】根据函数奇偶性和等量关系,求出函数是周期为4的周期函数,利用函数的周期性进行转化求解即可【详解】解:奇函数恒满足,,即,则,即,即是周期为4的周期函数,所以,故选:B3、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题4、C【解析】先由三角函数的最值得或,再由得,进而可得单调增区间.【详解】因为对任意恒成立,所以,则或,当时,,则(舍去),当时,,则,符合题意,即,令,解得,即的单调递增区间是;故选C.【点睛】本题主要考查了三角函数的图像和性质,利用三角函数的性质确定解析式,属于中档题.5、A【解析】先根据三角函数图象变换规律写出所得函数的解析式,再求出其对称中心,确定选项【详解】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为令,得,所以函数的对称中心为观察选项只有A符合故选A【点睛】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高6、A【解析】观察函数图像,求得,再结合函数图像的平移变换即可得解.详解】解:由图可知,,即,又,所以,即,又由图可知,所以,又,即即,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则,故选:A.【点睛】本题考查了利用函数图像求解析式,重点考查了函数图像的平移变换,属基础题.7、B【解析】根据独立重复试验的概率计算公式,准确计算,即可求解.【详解】由题意,该抽样是有放回的抽样,所以每次抽到正品的概率是,抽到次品的概率是,所以取出的两件产品中恰有一件是次品的概率为.故选:B.8、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.9、D【解析】根据a0=1(a≠0)时恒成立,我们令函数y=ax﹣2+1解析式中的指数部分为0,即可得到函数y=ax﹣2+1(a>0且a≠1)的图象恒过点的坐标解:∵当X=2时y=ax﹣2+1=2恒成立故函数y=ax﹣2+1(a>0且a≠1)的图象必经过点(2,2)故选D考点:指数函数的单调性与特殊点10、D【解析】由诱导公式及同角三角函数基本关系化简原式即可求解.【详解】由已知即故选:D【点睛】本题考查诱导公式及同角三角函数基本关系,属于简单题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.②.6【解析】利用基本不等式可知,当且仅当“”时取等号.而运用基本不等式后,结合二次函数的性质可知恰在时取得最小值,由此得解.【详解】解:由题意可知:,即,当且仅当“”时取等号,,当且仅当“”时取等号.故答案为:,6.【点睛】本题考查基本不等式的应用,同时也考查了配方法及二次函数的图像及性质,属于基础题.12、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.13、【解析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:14、【解析】把不等式x2﹣2x>0化为x(x﹣2)>0,求出解集即可【详解】不等式x2﹣2x>0可化为x(x﹣2)>0,解得x<0或x>2;∴不等式的解集为{x|x<0或x>2}故答案为【点睛】本题考查了一元二次不等式的解法与应用问题,是基础题目15、【解析】设则得到,再利用奇函数的性质得到答案.【详解】设则,函数是定义在上的奇函数故答案为【点睛】本题考查了利用函数的奇偶性计算函数表达式,属于常考题型.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)由三角函数的定义可得出的值,再结合同角三角函数的基本关系可求得的值;(2)利用诱导公式结合弦化切可求得结果.【小问1详解】解:由题意可知点的横坐标为,则,因为为第二象限角,则,故.【小问2详解】解:.17、(1)当时,定义域为;当时,定义域为.(2)不存在,证明见解析.【解析】(1)首先根据题意得到,再分类讨论解不等式即可.(2)首先根据单调性定义得到函数在为增函数,从而得到函数图像上不存在不同两点,使过这两点的直线平行于轴.【详解】(1)由题知:,①当时,即,则,定义域为.②当时,即,则,定义域为.综上,当时,定义域为;当时,定义域为.(2)因为,所以函数的定义域为,任取,且,因为,所以,因为,所以,所以,即,所以,函数在为增函数,所以函数图象上不存在不同两点,使过这两点的直线平行于轴.18、(1);(2).【解析】(1)先把化为,然后代入可求;(2)先把化为,然后代入可求.【详解】(1);(2).【点睛】本题主要考查齐次式的求值问题,齐次式一般转化为含有正切的式子,结合正切值可求.19、(1)=(2)2【解析】(1)利用诱导公式即可化简.(2)利用同角三角函数的基本关系化简并将(1)中的数据代入即可.【详解】解:(1).(2)由(1)知,【点睛】本题考查了三角函数的诱导公式以及同角三角函数的基本关系“齐次式”的运算,需熟记公式,属于基础题.20、(1)3x+y=0或x+y+2=0.(2)a=2或a=-2【解析】(1)直线在两坐标轴上的截距相等,有两种情况:截距为0和截距不为0,分别求出两种情况下的a的值,即得直线l的方程;(2)直线在两坐标轴上的截距互为相反数,由(1)可知有,解方程可得a。【详解】(1)当直线过原点时,该直线在x轴和y轴上截距为零,∴a=2,方程即为,当直线不经过原点时,截距存在且均不为0.∴,即a+1=1.∴a=0,方程即为x+y+2=0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工艺品出口合同3篇
- 2024年大数据信用担保服务合同3篇
- 2024年度德胜合生财富广场租赁清洁合同
- 2024年制造车间运营承包协议3篇
- 2024年度新能源汽车直购式分期付款销售合同范本3篇
- 2024年地方特色副食品合作协议2篇
- 2024年度船运公司水泥运输合同
- 2024年教育培训服务合同(编程技能)
- 2024年国际商务合作合同条款解读与执行要点版
- 2024年家居装修消防系统工程设计合作合同版B版
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 2024继续教育《医学科研诚信与医学了研究伦理》答案
- 焊接工艺评定报告PQR
- 航电枢纽工程船闸联合调试报告 航电枢纽 中标 船闸
- 四川省建设工程天府杯奖(省优质工程)评选办法》
- 祥云县秋豌豆发展现状及对策
- 经济应用文写作试题
- 任现职前主要专业技术工作业绩登记完整
- 标准人手孔面积与土方表
- 湖北省公路重点工程工地试验室管理暂行办法
- 土方工程量计算
评论
0/150
提交评论