![浅探关节镜下盘状半月板损伤的治疗课件_第1页](http://file4.renrendoc.com/view/e9263eb5c52f69067e2b8148b2c481cd/e9263eb5c52f69067e2b8148b2c481cd1.gif)
![浅探关节镜下盘状半月板损伤的治疗课件_第2页](http://file4.renrendoc.com/view/e9263eb5c52f69067e2b8148b2c481cd/e9263eb5c52f69067e2b8148b2c481cd2.gif)
![浅探关节镜下盘状半月板损伤的治疗课件_第3页](http://file4.renrendoc.com/view/e9263eb5c52f69067e2b8148b2c481cd/e9263eb5c52f69067e2b8148b2c481cd3.gif)
![浅探关节镜下盘状半月板损伤的治疗课件_第4页](http://file4.renrendoc.com/view/e9263eb5c52f69067e2b8148b2c481cd/e9263eb5c52f69067e2b8148b2c481cd4.gif)
![浅探关节镜下盘状半月板损伤的治疗课件_第5页](http://file4.renrendoc.com/view/e9263eb5c52f69067e2b8148b2c481cd/e9263eb5c52f69067e2b8148b2c481cd5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CS276B
TextInformationRetrieval,Mining,andExploitationLecture523January2003CS276B
TextInformationRetrie1RecapRecap2Today’stopicsFeatureselectionfortextclassificationMeasuringclassificationperformanceNearestneighborcategorizationToday’stopicsFeatureselectio3FeatureSelection:Why?Textcollectionshavealargenumberoffeatures10,000–1,000,000uniquewords–andmoreMakeusingaparticularclassifierfeasibleSomeclassifierscan’tdealwith100,000soffeat’sReducetrainingtimeTrainingtimeforsomemethodsisquadraticorworseinthenumberoffeatures(e.g.,logisticregression)ImprovegeneralizationEliminatenoisefeaturesAvoidoverfittingFeatureSelection:Why?Textco4Recap:FeatureReductionStandardwaysofreducingfeaturespacefortextStemmingLaugh,laughs,laughing,laughed->laughStopwordremovalE.g.,eliminateallprepositionsConversiontolowercaseTokenizationBreakonallspecialcharacters:fire-fighter->fire,fighterRecap:FeatureReductionStanda5FeatureSelectionYangandPedersen1997ComparisonofdifferentselectioncriteriaDF–documentfrequencyIG–informationgainMI–mutualinformationCHI–chisquareCommonstrategyComputestatisticforeachtermKeepntermswithhighestvalueofthisstatisticFeatureSelectionYangandPede6InformationGainInformationGain7(Pointwise)MutualInformation(Pointwise)MutualInformation8Chi-SquareTermpresentTermabsentDocumentbelongstocategoryABDocumentdoesnotbelongtocategoryCDX^2=N(AD-BC)^2/((A+B)(A+C)(B+D)(C+D))UseeithermaximumoraverageX^2Valueforcompleteindependence?Chi-SquareTermpresentTermabs9DocumentFrequencyNumberofdocumentsatermoccursinIssometimesusedforeliminatingbothveryfrequentandveryinfrequenttermsHowisdocumentfrequencymeasuredifferentfromtheother3measures?DocumentFrequencyNumberofdo10Yang&Pedersen:ExperimentsTwoclassificationmethodskNN(knearestneighbors;morelater)LinearLeastSquaresFitRegressionmethodCollectionsReuters-2217392categories16,000uniquetermsOhsumed:subsetofmedline14,000categories72,000uniquetermsLtctermweightingYang&Pedersen:ExperimentsTwo11Yang&Pedersen:ExperimentsChoosefeaturesetsizePreprocesscollection,discardingnon-selectedfeatures/wordsApplytermweighting->featurevectorforeachdocumentTrainclassifierontrainingsetEvaluateclassifierontestsetYang&Pedersen:ExperimentsChoo12浅探关节镜下盘状半月板损伤的治疗课件13DiscussionYoucaneliminate90%offeaturesforIG,DF,andCHIwithoutdecreasingperformance.Infact,performanceincreaseswithfewerfeaturesforIG,DF,andCHI.Mutualinformationisverysensitivetosmallcounts.IGdoesbestwithsmallestnumberoffeatures.Documentfrequencyisclosetooptimal.Byfarthesimplestfeatureselectionmethod.SimilarresultsforLLSF(regression).DiscussionYoucaneliminate9014ResultsWhyisselectingcommontermsagoodstrategy?ResultsWhyisselectingcommon15IG,DF,CHIAreCorrelated.IG,DF,CHIAreCorrelated.16InformationGainvsMutualInformationInformationgainissimilartoMIforrandomvariablesIndependence?Incontrast,pointwiseMIignoresnon-occurrenceoftermsE.g.,forcompletedependence,youget:P(AB)/(P(A)P(B))=1/P(A)–largerforraretermsthanforfrequenttermsYang&Pedersen:PointwiseMIfavorsraretermsInformationGainvsMutualInf17FeatureSelection:
OtherConsiderationsGenericvsClass-SpecificCompletelygeneric(class-independent)SeparatefeaturesetforeachclassMixed(alaYang&Pedersen)MaintainabilityovertimeIsaggressivefeaturesselectiongoodorbadforrobustnessovertime?Ideal:OptimalfeaturesselectedaspartoftrainingFeatureSelection:
OtherConsi18Yang&Pedersen:LimitationsDon’tlookatclassspecificfeatureselectionDon’tlookatmethodsthatcan’thandlehigh-dimensionalspacesEvaluatecategoryranking(asopposedtoclassificationaccuracy)Yang&Pedersen:LimitationsDon’19FeatureSelection:OtherMethodsStepwisetermselectionForwardBackwardExpensive:needtodon^2iterationsoftrainingTermclusteringDimensionreduction:PCA/SVDFeatureSelection:OtherMetho20WordRep.vs.DimensionReductionWordrepresentations:onedimensionforeachword(binary,count,orweight)Dimensionreduction:eachdimensionisauniquelinearcombinationofallwords(linearcase)Dimensionreductionisgoodforgenerictopics(“politics”),badforspecificclasses(“ruanda”).Why?SVD/PCAcomputationallyexpensiveHighercomplexityinimplementationNoclearexamplesofhigherperformancethroughdimensionreductionWordRep.vs.DimensionReduct21WordRep.vs.DimensionReductionWordRep.vs.DimensionReduct22MeasuringClassification
FiguresofMeritAccuracyofclassificationMainevaluationcriterioninacademiaMoreinamomenSpeedoftrainingstatisticalclassifierSpeedofclassification(docs/hour)NobigdifferencesformostalgorithmsExceptions:kNN,complexpreprocessingrequirementsEffortincreatingtrainingset(humanhours/topic)MoreonthisinLecture9(ActiveLearning)MeasuringClassification
Figur23MeasuresofAccuracyErrorrateNotagoodmeasureforsmallclasses.Why?Precision/recallforclassificationdecisionsF1measure:1/F1=½(1/P+1/R)BreakevenpointCorrectestimateofsizeofcategoryWhyisthisdifferent?Precision/recallforrankingclassesStabilityovertime/conceptdriftUtilityMeasuresofAccuracyErrorrate24Precision/RecallforRankingClassesExample:“BadwheatharvestinTurkey”TruecategoriesWheatTurkeyRankedcategorylist0.9:turkey0.7:poultry0.5:armenia0.4:barley0.3:georgiaPrecisionat5:0.1,Recallat5:0.5Precision/RecallforRankingC25Precision/RecallforRankingClassesConsiderproblemswithmanycategories(>10)Usemethodreturningscorescomparableacrosscategories(not:NaïveBayes)Rankcategoriesandcomputeaverageprecisionrecall(orothermeasurecharacterizingprecision/recallcurve)GoodmeasureforinteractivesupportofhumancategorizationUselessforan“autonomous”system(e.g.afilteronastreamofnewswirestories)Precision/RecallforRankingC26ConceptDriftCategorieschangeovertimeExample:“presidentoftheunitedstates”1999:clintonisgreatfeature2002:clintonisbadfeatureOnemeasureofatextclassificationsystemishowwellitprotectsagainstconceptdrift.Featureselection:goodorbadtoprotectagainstconceptdrift?ConceptDriftCategorieschange27Micro-vs.Macro-AveragingIfwehavemorethanoneclass,howdowecombinemultipleperformancemeasuresintoonequantity?Macroaveraging:Computeperformanceforeachclass,thenaverage.Microaveraging:Collectdecisionsforallclasses,computecontingencytable,evaluate.Micro-vs.Macro-AveragingIfw28Micro-vs.Macro-Averaging:ExampleTruth:yesTruth:noClassifier:yes1010Classifier:no10970Truth:yesTruth:noClassifier:yes9010Classifier:no10890Truth:yesTruth:noClassifier:yes10020Classifier:no201860Class1Class2Micro.Av.TableMacroaveragedprecision:(0.5+0.9)/2=0.7Microaveragedprecision:100/120=.83Whythisdifference?Micro-vs.Macro-Averaging:Ex29Reuters1NewswiretextStatistics(varyaccordingtoversionused)Trainingset:9,610Testset:3,66250%ofdocumentshavenocategoryassignedAveragedocumentlength:90.6Numberofclasses:92Exampleclasses:currencyexchange,wheat,goldMaxclassesassigned:14Averagenumberofclassesassigned1.24fordocswithatleastonecategoryReuters1Newswiretext30Reuters1Onlyabout10outof92categoriesarelargeMicroaveragingmeasuresperformanceonlargecategories.Reuters1Onlyabout10outof31FactorsAffectingMeasuresVariabilityofdataDocumentsize/lengthquality/styleofauthorshipuniformityofvocabularyVariabilityof“truth”/goldstandardneeddefinitivejudgementonwhichtopic(s)adocbelongstousuallyhumanIdeally:consistentjudgementsFactorsAffectingMeasuresVari32AccuracymeasurementConfusionmatrix53TopicassignedbyclassifierActualTopicThis(i,j)entrymeans53ofthedocsactuallyintopiciwereputintopicjbytheclassifier.AccuracymeasurementConfusion33ConfusionmatrixFunctionofclassifier,topicsandtestdocs.Foraperfectclassifier,alloff-diagonalentriesshouldbezero.Foraperfectclassifier,iftherearendocsincategoryjthanentry(j,j)shouldben.Straightforwardwhenthereis1categoryperdocument.Canbeextendedtoncategoriesperdocument.ConfusionmatrixFunctionofcl34Confusionmeasures(1class/doc)Recall:Fractionofdocsintopiciclassifiedcorrectly:Precision:Fractionofdocsassignedtopicithatareactuallyabouttopici:“Correctrate”:(1-errorrate)Fractionofdocsclassifiedcorrectly:Confusionmeasures(1class/35IntegratedEvaluation/OptimizationPrincipledapproachtotrainingOptimizethemeasurethatperformanceismeasuredwiths:vectorofclassifierdecision,z:vectoroftrueclassesh(s,z)=costofmakingdecisionssfortrueassignmentszIntegratedEvaluation/Optimiza36Utility/CostOnecostfunctionhisbasedoncontingencytable.Assumeidenticalcostforallfalsepositivesetc.CostC=l11*A+l12*B+l21*C+l22*DForthiscostc,wegetthefollowingoptimalitycriterionTruth:yesTruth:noClassifier:yesCost:λ11Count:ACost:λ12Count:BClassifier:noCost:λ21Count;CCost:λ22Count:DUtility/CostOnecostfunctio37Utility/CostTruth:yesTruth:noClassifier:yesλ11λ12Classifier:noλ21λ22Mostcommoncost:1forerror,0forcorrect.Pi>?Productcross-sale:highcostforfalsepositive,lowcostforfalsenegative.Patentsearch:lowcostforfalsepositive,highcostforfalsenegative.Utility/CostTruth:yesTruth:38
AreAllOptimalRulesofFormp>θ?Intheaboveexamples,allyouneedtodoisestimateprobabilityofclassmembership.Canallproblemsbesolvedlikethis?No!ProbabilityisoftennotsufficientUserdecisiondependsonthedistributionofrelevanceExample:informationfilterforterrorism
AreAllOptimalRulesofForm39NaïveBayesNaïveBayes40VectorSpaceClassification
NearestNeighborClassificationVectorSpaceClassification
Ne41RecallVectorSpaceRepresentationEachdocjisavector,onecomponentforeachterm(=word).Normalizetounitlength.Haveavectorspacetermsareaxesndocsliveinthisspaceevenwithstemming,mayhave10000+dimensions,oreven1,000,000+RecallVectorSpaceRepresenta42ClassificationUsingVectorSpacesEachtrainingdocapoint(vector)labeledbyitstopic(=class)Hypothesis:docsofthesametopicformacontiguousregionofspaceDefinesurfacestodelineatetopicsinspaceClassificationUsingVectorSp43TopicsinavectorspaceGovernmentScienceArtsTopicsinavectorspaceGovern44GivenatestdocFigureoutwhichregionitliesinAssigncorrespondingclassGivenatestdocFigureoutwhi45Testdoc=GovernmentGovernmentScienceArtsTestdoc=GovernmentGovernmen46BinaryClassificationConsider2classproblemsHowdowedefine(andfind)theseparatingsurface?Howdowetestwhichregionatestdocisin?BinaryClassificationConsider47SeparationbyHyperplanesAssumelinearseparabilityfornow:in2dimensions,canseparatebyalineinhigherdimensions,needhyperplanesCanfindseparatinghyperplanebylinearprogramming(e.g.perceptron):separatorcanbeexpressedasax+by=cSeparationbyHyperplanesAssum48Linearprogramming/PerceptronFinda,b,c,suchthatax+by
cforredpointsax+by
cforgreenpoints.Linearprogramming/Perceptro49RelationshiptoNaïveBayes?Finda,b,c,suchthatax+by
cforredpointsax+by
cforgreenpoints.RelationshiptoNaïveBayes?Fi50LinearClassifiersManycommontextclassifiersarelinearclassifiersDespitethissimilarity,largeperformancedifferencesForseparableproblems,thereisaninfinitenumberofseparatinghyperplanes.Whichonedoyouchoose?Whattodofornon-separableproblems?LinearClassifiersManycommon51Whichhyperplane?Ingeneral,lotsofpossiblesolutionsfora,b,c.Whichhyperplane?Ingeneral,l52SupportVectorMachine(SVM)SupportvectorsMaximizemarginQuadraticprogrammingproblem
Thedecisionfunctionisfullyspecifiedbysubsetoftrainingsamples,thesupportvectors.TextclassificationmethoddujourTopicoflecture9SupportVectorMachine(SVM)Su53Category:InterestExampleSVMfeatures
witiwiti0.70prime0.67rate0.63interest0.60rates0.46discount0.43bundesbank0.43baker-0.71dlrs-0.35world-0.33sees-0.25year-0.24group-0.24dlr-0.24januaryCategory:InterestExampleSVM54MoreThanTwoClassesAny-oformulticlassclassificationFornclasses,decomposeintonbinaryproblemsOne-ofclassification:eachdocumentbelongstoexactlyoneclassHowdowecomposeseparatingsurfacesintoregions?CentroidclassificationKnearestneighborclassificationMoreThanTwoClassesAny-ofor55ComposingSurfaces:Issues???ComposingSurfaces:Issues???56SeparatingMultipleTopicsBuildaseparatorbetweeneachtopicanditscomplementaryset(docsfromallothertopics).Giventestdoc,evaluateitformembershipineachtopic.DeclaremembershipintopicsOne-ofclassification:forclasswithmaximumscore/confidence/probabilityMulticlassclassification:ForclassesabovethresholdSeparatingMultipleTopicsBuil57NegativeexamplesFormulateasabove,exceptnegativeexamplesforatopicareaddedtoitscomplementaryset.PositiveexamplesNegativeexamplesNegativeexamplesFormulateas58CentroidClassificationGiventrainingdocsforatopic,computetheircentroidNowhaveacentroidforeachtopicGivenquerydoc,assigntotopicwhosecentroidisnearest.Exercise:ComparetoRocchioCentroidClassificationGivent59ExampleGovernmentScienceArtsExampleGovernmentScienceArts60kNearestNeighborClassificationToclassifydocumentdintoclasscDefinek-neighborhoodNasknearestneighborsofdCountnumberofdocumentslinNthatbelongtocEstimateP(c|d)asl/kkNearestNeighborClassificat61CoverandHart1967Asymptotically,theerrorrateof1-nearest-neighborclassificationislessthantwicetheBayesrate.Assumethatquerypointcoincideswithatrainingpoint.Bothquerypointandtrainingpointcontributeerror->2timesBayesrateCoverandHart1967Asymptotica62kNNvs.RegressionkNNhashighvarianceandlowbias.Linearregressionhaslowvarianceandhighbias.kNNvs.RegressionkNNhashigh63kNN:DiscussionClassificationtimelinearintrainingsetTrainingsetgenerationincompletelyjudgedsetcanbeproblematicformulticlassproblemsNofeatureselectionnecessaryScaleswellwithlargenumberofcategoriesDon’tneedtotrainnclassifiersfornclassesCategoriescaninfluenceeachotherSmallchangestoonecategorycanhaverippleeffectScorescanbehardtoconverttoprobabilitiesNotrainingnecessaryActually:nottrue.Why?kNN:DiscussionClassification64NumberofneighborsNumberofneighbors65ReferencesAComparativeStudyonFeatureSelectioninTextCategorization(1997)
YimingYang,JanO.Pedersen.ProceedingsofICML-97,14thInternationalConferenceonMachineLearning.EvaluatingandOptimizingAutonomousTextClassificationSystems(1995)
DavidLewis.Proceedingsofthe18thAnnualInternationalACMSIGIRConferenceonResearchandDevelopmentinInformationRetrievalFoundationsofStatisticalNaturalLanguageProcessing.Chapter16.MITPress.ManningandSchuetze.TrevorHastie,RobertTibshiraniandJeromeFriedman,"ElementsofStatisticalLearning:DataMining,InferenceandPrediction"Springer-Verlag,NewYork.ReferencesAComparativeStudy66KappaMeasureKappameasuresAgreementamongcodersDesignedforcategoricaljudgmentsCorrectsforchanceagreementKappa=[P(A)–P(E)]/[1–P(E)]P(A)–proportionoftimecodersagreeP(E)–whatagreementwouldbebychanceKappa=0forchanceagreement,1fortotalagreement.KappaMeasureKappameasures67CS276B
TextInformationRetrieval,Mining,andExploitationLecture523January2003CS276B
TextInformationRetrie68RecapRecap69Today’stopicsFeatureselectionfortextclassificationMeasuringclassificationperformanceNearestneighborcategorizationToday’stopicsFeatureselectio70FeatureSelection:Why?Textcollectionshavealargenumberoffeatures10,000–1,000,000uniquewords–andmoreMakeusingaparticularclassifierfeasibleSomeclassifierscan’tdealwith100,000soffeat’sReducetrainingtimeTrainingtimeforsomemethodsisquadraticorworseinthenumberoffeatures(e.g.,logisticregression)ImprovegeneralizationEliminatenoisefeaturesAvoidoverfittingFeatureSelection:Why?Textco71Recap:FeatureReductionStandardwaysofreducingfeaturespacefortextStemmingLaugh,laughs,laughing,laughed->laughStopwordremovalE.g.,eliminateallprepositionsConversiontolowercaseTokenizationBreakonallspecialcharacters:fire-fighter->fire,fighterRecap:FeatureReductionStanda72FeatureSelectionYangandPedersen1997ComparisonofdifferentselectioncriteriaDF–documentfrequencyIG–informationgainMI–mutualinformationCHI–chisquareCommonstrategyComputestatisticforeachtermKeepntermswithhighestvalueofthisstatisticFeatureSelectionYangandPede73InformationGainInformationGain74(Pointwise)MutualInformation(Pointwise)MutualInformation75Chi-SquareTermpresentTermabsentDocumentbelongstocategoryABDocumentdoesnotbelongtocategoryCDX^2=N(AD-BC)^2/((A+B)(A+C)(B+D)(C+D))UseeithermaximumoraverageX^2Valueforcompleteindependence?Chi-SquareTermpresentTermabs76DocumentFrequencyNumberofdocumentsatermoccursinIssometimesusedforeliminatingbothveryfrequentandveryinfrequenttermsHowisdocumentfrequencymeasuredifferentfromtheother3measures?DocumentFrequencyNumberofdo77Yang&Pedersen:ExperimentsTwoclassificationmethodskNN(knearestneighbors;morelater)LinearLeastSquaresFitRegressionmethodCollectionsReuters-2217392categories16,000uniquetermsOhsumed:subsetofmedline14,000categories72,000uniquetermsLtctermweightingYang&Pedersen:ExperimentsTwo78Yang&Pedersen:ExperimentsChoosefeaturesetsizePreprocesscollection,discardingnon-selectedfeatures/wordsApplytermweighting->featurevectorforeachdocumentTrainclassifierontrainingsetEvaluateclassifierontestsetYang&Pedersen:ExperimentsChoo79浅探关节镜下盘状半月板损伤的治疗课件80DiscussionYoucaneliminate90%offeaturesforIG,DF,andCHIwithoutdecreasingperformance.Infact,performanceincreaseswithfewerfeaturesforIG,DF,andCHI.Mutualinformationisverysensitivetosmallcounts.IGdoesbestwithsmallestnumberoffeatures.Documentfrequencyisclosetooptimal.Byfarthesimplestfeatureselectionmethod.SimilarresultsforLLSF(regression).DiscussionYoucaneliminate9081ResultsWhyisselectingcommontermsagoodstrategy?ResultsWhyisselectingcommon82IG,DF,CHIAreCorrelated.IG,DF,CHIAreCorrelated.83InformationGainvsMutualInformationInformationgainissimilartoMIforrandomvariablesIndependence?Incontrast,pointwiseMIignoresnon-occurrenceoftermsE.g.,forcompletedependence,youget:P(AB)/(P(A)P(B))=1/P(A)–largerforraretermsthanforfrequenttermsYang&Pedersen:PointwiseMIfavorsraretermsInformationGainvsMutualInf84FeatureSelection:
OtherConsiderationsGenericvsClass-SpecificCompletelygeneric(class-independent)SeparatefeaturesetforeachclassMixed(alaYang&Pedersen)MaintainabilityovertimeIsaggressivefeaturesselectiongoodorbadforrobustnessovertime?Ideal:OptimalfeaturesselectedaspartoftrainingFeatureSelection:
OtherConsi85Yang&Pedersen:LimitationsDon’tlookatclassspecificfeatureselectionDon’tlookatmethodsthatcan’thandlehigh-dimensionalspacesEvaluatecategoryranking(asopposedtoclassificationaccuracy)Yang&Pedersen:LimitationsDon’86FeatureSelection:OtherMethodsStepwisetermselectionForwardBackwardExpensive:needtodon^2iterationsoftrainingTermclusteringDimensionreduction:PCA/SVDFeatureSelection:OtherMetho87WordRep.vs.DimensionReductionWordrepresentations:onedimensionforeachword(binary,count,orweight)Dimensionreduction:eachdimensionisauniquelinearcombinationofallwords(linearcase)Dimensionreductionisgoodforgenerictopics(“politics”),badforspecificclasses(“ruanda”).Why?SVD/PCAcomputationallyexpensiveHighercomplexityinimplementationNoclearexamplesofhigherperformancethroughdimensionreductionWordRep.vs.DimensionReduct88WordRep.vs.DimensionReductionWordRep.vs.DimensionReduct89MeasuringClassification
FiguresofMeritAccuracyofclassificationMainevaluationcriterioninacademiaMoreinamomenSpeedoftrainingstatisticalclassifierSpeedofclassification(docs/hour)NobigdifferencesformostalgorithmsExceptions:kNN,complexpreprocessingrequirementsEffortincreatingtrainingset(humanhours/topic)MoreonthisinLecture9(ActiveLearning)MeasuringClassification
Figur90MeasuresofAccuracyErrorrateNotagoodmeasureforsmallclasses.Why?Precision/recallforclassificationdecisionsF1measure:1/F1=½(1/P+1/R)BreakevenpointCorrectestimateofsizeofcategoryWhyisthisdifferent?Precision/recallforrankingclassesStabilityovertime/conceptdriftUtilityMeasuresofAccuracyErrorrate91Precision/RecallforRankingClassesExample:“BadwheatharvestinTurkey”TruecategoriesWheatTurkeyRankedcategorylist0.9:turkey0.7:poultry0.5:armenia0.4:barley0.3:georgiaPrecisionat5:0.1,Recallat5:0.5Precision/RecallforRankingC92Precision/RecallforRankingClassesConsiderproblemswithmanycategories(>10)Usemethodreturningscorescomparableacrosscategories(not:NaïveBayes)Rankcategoriesandcomputeaverageprecisionrecall(orothermeasurecharacterizingprecision/recallcurve)GoodmeasureforinteractivesupportofhumancategorizationUselessforan“autonomous”system(e.g.afilteronastreamofnewswirestories)Precision/RecallforRankingC93ConceptDriftCategorieschangeovertimeExample:“presidentoftheunitedstates”1999:clintonisgreatfeature2002:clintonisbadfeatureOnemeasureofatextclassificationsystemishowwellitprotectsagainstconceptdrift.Featureselection:goodorbadtoprotectagainstconceptdrift?ConceptDriftCategorieschange94Micro-vs.Macro-AveragingIfwehavemorethanoneclass,howdowecombinemultipleperformancemeasuresintoonequantity?Macroaveraging:Computeperformanceforeachclass,thenaverage.Microaveraging:Collectdecisionsforallclasses,computecontingencytable,evaluate.Micro-vs.Macro-AveragingIfw95Micro-vs.Macro-Averaging:ExampleTruth:yesTruth:noClassifier:yes1010Classifier:no10970Truth:yesTruth:noClassifier:yes9010Classifier:no10890Truth:yesTruth:noClassifier:yes10020Classifier:no201860Class1Class2Micro.Av.TableMacroaveragedprecision:(0.5+0.9)/2=0.7Microaveragedprecision:100/120=.83Whythisdifference?Micro-vs.Macro-Averaging:Ex96Reuters1NewswiretextStatistics(varyaccordingtoversionused)Trainingset:9,610Testset:3,66250%ofdocumentshavenocategoryassignedAveragedocumentlength:90.6Numberofclasses:92Exampleclasses:currencyexchange,wheat,goldMaxclassesassigned:14Averagenumberofclassesassigned1.24fordocswithatleastonecategoryReuters1Newswiretext97Reuters1Onlyabout10outof92categoriesarelargeMicroaveragingmeasuresperformanceonlargecategories.Reuters1Onlyabout10outof98FactorsAffectingMeasuresVariabilityofdataDocumentsize/lengthquality/styleofauthorshipuniformityofvocabularyVariabilityof“truth”/goldstandardneeddefinitivejudgementonwhichtopic(s)adocbelongstousuallyhumanIdeally:consistentjudgementsFactorsAffectingMeasuresVari99AccuracymeasurementConfusionmatrix53TopicassignedbyclassifierActualTopicThis(i,j)entrymeans53ofthedocsactuallyintopiciwereputintopicjbytheclassifier.AccuracymeasurementConfusion100ConfusionmatrixFunctionofclassifier,topicsandtestdocs.Foraperfectclassifier,alloff-diagonalentriesshouldbezero.Foraperfectclassifier,iftherearendocsincategoryjthanentry(j,j)shouldben.Straightforwardwhenthereis1categoryperdocument.Canbeextendedtoncategoriesperdocument.ConfusionmatrixFunctionofcl101Confusionmeasures(1class/doc)Recall:Fractionofdocsintopiciclassifiedcorrectly:Precision:Fractionofdocsassignedtopicithatareactuallyabouttopici:“Correctrate”:(1-errorrate)Fractionofdocsclassifiedcorrectly:Confusionmeasures(1class/102IntegratedEvaluation/OptimizationPrincipledapproachtotrainingOptimizethemeasurethatperformanceismeasuredwiths:vectorofclassifierdecision,z:vectoroftrueclassesh(s,z)=costofmakingdecisionssfortrueassignmentszIntegratedEvaluation/Optimiza103Utility/CostOnecostfunctionhisbasedoncontingencytable.Assumeidenticalcostforallfalsepositivesetc.CostC=l11*A+l12*B+l21*C+l22*DForthiscostc,wegetthefollowingoptimalitycriterionTruth:yesTruth:noClassifier:yesCost:λ11Count:ACost:λ12Count:BClassifier:noCost:λ21Count;CCost:λ22Count:DUtility/CostOnecostfunctio104Utility/CostTruth:yesTruth:noClassifier:yesλ11λ12Classifier:noλ21λ22Mostcommoncost:1forerror,0forcorrect.Pi>?Productcross-sale:highcostforfalsepositive,lowcostforfalsenegative.Patentsearch:lowcostforfalsepositive,highcostforfalsenegative.Utility/CostTruth:yesTruth:105
AreAllOptimalRulesofFormp>θ?Intheaboveexamples,allyouneedtodoisestimateprobabilityofclassmembership.Canallproblemsbesolvedlikethis?No!ProbabilityisoftennotsufficientUserdecisiondependsonthedistributionofrelevanceExample:informationfilterforterrorism
AreAllOptimalRulesofForm106NaïveBayesNaïveBayes107VectorSpaceClassification
NearestNeighborClassificationVector
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业与员工劳动协议示范文本
- 2025年策划合作项目合作方解除协议书
- 2025年建筑行业策划合伙人合同样本
- 2025年预防用生物制品项目规划申请报告
- 2025年中等职业技术学校教务主任合同
- 2025年仓储短期租赁策划合同范本
- 2025年公共交通改善合同协议
- 2025年公司员工股权合作合同指南
- 2025年标准融资协调合同
- 2025年医院医师综合雇佣协议
- 2022版义务教育英语课程标准整体解读课件
- 01 H5入门知识课件
- 2024年安全生产网络知识竞赛题库及答案(共五套)
- 2024年实验小学大队委竞选笔试试题题库
- 学校办公室卫生制度
- 医学生理学智慧树知到答案2024年德州学院
- GB/T 44412-2024船舶与海上技术液化天然气燃料船舶加注规范
- 小学三年级数学上册口算题卡(加换算)
- 小学数学二年级《数图形》练习题
- 机械制造HSE协议书
- 2024-2030年中国静脉血栓栓塞症(VTE)防治行业市场全景监测及投资策略研究报告
评论
0/150
提交评论