版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ThermochemistryChapter6Energychangeofchemicalreaction.ThermochemistryChapter6Energy1Thermalenergytherandommotion.ChemicalenergythebondsofsubstancesNuclearenergy:neutronsandprotonsintheatomElectricalenergy:theflowofelectronsPotentialenergy:virtueofanobject’spositionItisthecapacitytodowork,WhatistheEnergy?andexistsinavarietyoftheforms.Nooneknowshowmuchtheexactenergyis!Thethermodynamicsdealsonlywiththeenergychangesthataccompanychemicalreactions.Thermalenergytherandomm2Systemand
SurroundingsSystemisthespecificpartoftheuniversethatisofinterestinthestudy.Opensystemmass&energyexchangedclosedsystemonlyenergyexchangedIsolatedsystemNothingexchangedSystemandSurroundingsSystem3(1)Heat
istheenergytransferbetween
a
systemanditssurroundingsthatareatdifferenttemperatures.Whatwecanmeasureisonlytheenergychange!Temperatureisameasureofthethermalenergy.Temperature=ThermalEnergy900C400Cgreaterthermalenergy?(1)Heatistheenergytransf4(2)Work,likeheat,
istheenergytransferbetween
a
systemanditssurroundings.Work(w)=Force(F)distance(h)=PAhhAA=PDVPressure-volumework(2)Work,likeheat,istheen5ThermodynamicsStatefunctions
determinedonlybythesystemstate,regardlessofhowitwasachieved(i.e.history).Thepotentialenergyofhiker1isthesameasthatofhiker2.Energychange:DE=Efinal-EinitialOtherchanges:DP=Pfinal-PinitialDV=Vfinal-VinitialDT=Tfinal-TinitialSignificance
itmakesthereasoningandcalculationsimple.ThermodynamicsStatefunctions6DE=q+wq:theheatexchangewiththesurroundings.Attention:
Eisastatefunction,butqandwarenotastatefunction,sincethelattertwoareonlyrelatedtoaprocess.TheFirstLawofThermodynamics:
Theenergyoftheuniversecanbeconvertedfromoneformtoanother,butitcannotbecreatedordestroyed.w:theworkdoneon(orby)thesystem.“+”gainbythesystem“–”lostbythesystemDEsystem+DEsurroundings=0DE=Efinal-EinitialThesystemenergychangeDE=q+w7Exothermicprocess,givesofftheheattothesurroundings.Endothermicprocess,getstheheatfromthesurroundings.2H2
(g)+O2
(g)2H2O(l)+energyH2O(g)H2O(l)+energyenergy+2HgO(s)2Hg(l)+O2
(g)Exothermicprocess,givesoff8Asampleofnitrogengasexpandsinvolumefrom1.6Lto5.4Latconstanttemperature.Whatistheworkdoneinjoulesifthegasexpands(a)againstavacuumand(b)againstaconstantpressureof3.7atm?w=-PDV(a)DV=5.4L–1.6L=3.8LP=0atmW=-0atmx3.8L=0L•atm=0joules(b)DV=5.4L–1.6L=3.8LP=3.7atmw=-3.7atmx3.8L=-14L•atmw=-14L•atmx101.3J1L•atm=-1400JAsampleofnitrogengasexpan9DE=q+wDV=0,w=0DE=qvAtconstantvolume,theheatadsorbedorreleasedtoitssurroundingistotallyusedtoincreaseordecreasethesysteminternalenergy.AtconstantvolumeDE=q+wDV=0,w=0DE=qv10(2)AtconstantpressureAtconstantP,
DH=DE+PDVDefineenthalpy:H=E+PV
Hisastatefunction,butitisnotthesystem
energy.Instead,Hisonlyameasureofthesystemenergy!w=-PDV,DE
=qp–PDVE2-E1=qp–P(V2–V1)qp
=(E2+PV2)–(E1+PV1)qp
=H2–H1=DHatconstantpressure,theheatadsorbedorreleasedistotallyusedtoincreaseordecreasethesystementhalpy.DE=q+w(2)AtconstantpressureAtcon11AComparisonofDHandDE2Na(s)+2H2O(l)2NaOH(aq)+H2(g)DH=-367.5kJ/molDE=DH-PDVAt250Cand1atm,1moleH2=24.5LPDV=1atmx24.5L=2.5kJDE=-367.5kJ/mol–2.5kJ/mol=-370.0kJ/mol6.4AComparisonofDHandDE2Na(12DH(Enthalpychange):H(products)–H(reactants)Hproducts<HreactantsDH<0Hproducts>HreactantsDH>0H(Enthalpy):describetheheatflowinaprocessthatoccursatconstantpressure.DH(Enthalpychange):H(prod13ThermochemicalEquationsH2O(s)H2O(l)DH=6.01kJSystemabsorbsheatEndothermicDH>0Itmeansthat:
6.01kJareabsorbedbyonemoleoficethatmeltsat00Cand1atm.ThermochemicalEquationsH2O(s14H2O(s)H2O(l)DH=6.01kJThermochemicalEquationsIftheequationisreverse,thesignofDHmustchangeH2O(l)H2O(s)DH=-6.01kJIfbothsidesaremutipliedbyn,DHmustchangebyn.2H2O(s)2H2O(l)DH=2x6.01
=12.0kJThephysicalstatesmustbeallspecifiedH2O(l)H2O(g)DH=44.0kJH2O(s)H2O(l)DH=615Howmuchheatisevolvedwhen266gofwhitephosphorus(P4)burninair?P4
(s)+5O2
(g)P4O10
(s)
DH=-3013kJ266gP41molP4123.9gP4x3013kJ1molP4x=6470kJHowmuchheatisevolvedwhen16化学原理Chemistry课件-post+2+thermochemistry17theabsolutevalueofenthalpycannotbemeasured.i.e.
DHfo=0foranyelementinitsmoststableform.DH0(O2,g)=0fDH0(O3,g)=142kJ/molfDH0(C,graphite)=0fDH0(C,diamond)=1.90kJ/molfHowtomakeatheoreticalcalculation?Canweestablishareferencepoint?
DHfo
Standardenthalpyofformationtheheatchangeresultswhenonemoleofacompoundisformedat1atmfromitselementsinthemoststableform.C(s,graphite)+O2(g)=CO2(g)DHrxn0=-393.5kJThen,DHf0(CO2,g)=-393.5kJ/moltheabsolutevalueofenthalpy18DHorxn=(H2+H3)–H1
Ca(s)O2(g)C(s,graphite)32H4
Ca(s)O2(g)12H5DHoa
=H4–H1
DHoc
=H2–H5
DHod
=H3–H6
CaCO3(s)CaO(s)+CO2(g)H1H2H3O2(g)C(s,graphite)H6+DHob
=(H5+H6)–H4DHorxn=DHoa+DHob+
DHoc+
DHodDHrxn=[DH
(CaO,s)
+DH
(CO2,g)]–
DH(CaCO3,s)oofofofof=-DH(CaCO3,s)of=DH(CaO,s)of=DH(CO2,g)1atmDHorxn=(H2+H3)–H119化学原理Chemistry课件-post+2+thermochemistry20Thestandardenthalpyofreactioncarriedoutat1atm.aA+bBcC+dDDH0rxndDH0(D)fcDH0(C)f=[+]-bDH0(B)faDH0(A)f[+]Benzene(C6H6)burnsinairtoproducecarbondioxideandliquidwater.Howmuchheatisreleasedpermoleofbenzenecombusted?Thestandardenthalpyofformationofbenzeneis49.04kJ/mol.2C6H6
(l)+15O2
(g)12CO2
(g)+6H2O(l)=[12(–393.5)+6(–187.6)]–[249.04+0]=-5946kJ-5946kJ2mol=-2973kJ/molC6H6=[12(CO2,g)+6(H2O,l)]–[2(C6H6,l)+15(O2,g)]DH0rxnDH0fDH0
fDH0
fDH0
fThestandardenthalpyofreact21Hess’sLaw:Whenreactantsareconvertedtoproducts,thechangeinenthalpyisthesameregardlessofthereactiontakingplaceinonesteporinaseriesofsteps.HowmuchisDHofforCS2(l)giventhat:C(graphite)+O2
(g)CO2
(g)
DH0=-393.5kJrxnS(rhombic)+O2
(g)SO2
(g)
DH0=-296.1kJrxnCS2(l)+3O2
(g)CO2
(g)+2SO2
(g)
DH0=-1072kJrxnC(graphite)+2S(rhombic)CS2(l)rxnC(graphite)+O2
(g)CO2
(g)
DH0
=-393.5kJ2S(rhombic)+2O2
(g)2SO2
(g)
DH0
=-296.1x2kJrxnCO2(g)+2SO2
(g)CS2
(l)+3O2
(g)
DH0
=+1072kJrxn+C(graphite)+2S(rhombic)CS2(l)DH0
=-393.5+(2x-296.1)+1072=86.3kJrxnHess’sLaw:Whenreactantsar22DHsoln=Step1+Step2=788–784=4kJ/molStep1LatticeenergyStep2hydrationDissolutionProcessofNaClDHsoln=Step1+Step2Step23Whichsubstance(s)couldbeusedformeltingice?Whichsubstance(s)couldbeusedforacoldpack?Whichsubstance(s)couldbeus24Exercises:6.196.546.806.1046.113
Exercises:25ThermochemistryChapter6Energychangeofchemicalreaction.ThermochemistryChapter6Energy26Thermalenergytherandommotion.ChemicalenergythebondsofsubstancesNuclearenergy:neutronsandprotonsintheatomElectricalenergy:theflowofelectronsPotentialenergy:virtueofanobject’spositionItisthecapacitytodowork,WhatistheEnergy?andexistsinavarietyoftheforms.Nooneknowshowmuchtheexactenergyis!Thethermodynamicsdealsonlywiththeenergychangesthataccompanychemicalreactions.Thermalenergytherandomm27Systemand
SurroundingsSystemisthespecificpartoftheuniversethatisofinterestinthestudy.Opensystemmass&energyexchangedclosedsystemonlyenergyexchangedIsolatedsystemNothingexchangedSystemandSurroundingsSystem28(1)Heat
istheenergytransferbetween
a
systemanditssurroundingsthatareatdifferenttemperatures.Whatwecanmeasureisonlytheenergychange!Temperatureisameasureofthethermalenergy.Temperature=ThermalEnergy900C400Cgreaterthermalenergy?(1)Heatistheenergytransf29(2)Work,likeheat,
istheenergytransferbetween
a
systemanditssurroundings.Work(w)=Force(F)distance(h)=PAhhAA=PDVPressure-volumework(2)Work,likeheat,istheen30ThermodynamicsStatefunctions
determinedonlybythesystemstate,regardlessofhowitwasachieved(i.e.history).Thepotentialenergyofhiker1isthesameasthatofhiker2.Energychange:DE=Efinal-EinitialOtherchanges:DP=Pfinal-PinitialDV=Vfinal-VinitialDT=Tfinal-TinitialSignificance
itmakesthereasoningandcalculationsimple.ThermodynamicsStatefunctions31DE=q+wq:theheatexchangewiththesurroundings.Attention:
Eisastatefunction,butqandwarenotastatefunction,sincethelattertwoareonlyrelatedtoaprocess.TheFirstLawofThermodynamics:
Theenergyoftheuniversecanbeconvertedfromoneformtoanother,butitcannotbecreatedordestroyed.w:theworkdoneon(orby)thesystem.“+”gainbythesystem“–”lostbythesystemDEsystem+DEsurroundings=0DE=Efinal-EinitialThesystemenergychangeDE=q+w32Exothermicprocess,givesofftheheattothesurroundings.Endothermicprocess,getstheheatfromthesurroundings.2H2
(g)+O2
(g)2H2O(l)+energyH2O(g)H2O(l)+energyenergy+2HgO(s)2Hg(l)+O2
(g)Exothermicprocess,givesoff33Asampleofnitrogengasexpandsinvolumefrom1.6Lto5.4Latconstanttemperature.Whatistheworkdoneinjoulesifthegasexpands(a)againstavacuumand(b)againstaconstantpressureof3.7atm?w=-PDV(a)DV=5.4L–1.6L=3.8LP=0atmW=-0atmx3.8L=0L•atm=0joules(b)DV=5.4L–1.6L=3.8LP=3.7atmw=-3.7atmx3.8L=-14L•atmw=-14L•atmx101.3J1L•atm=-1400JAsampleofnitrogengasexpan34DE=q+wDV=0,w=0DE=qvAtconstantvolume,theheatadsorbedorreleasedtoitssurroundingistotallyusedtoincreaseordecreasethesysteminternalenergy.AtconstantvolumeDE=q+wDV=0,w=0DE=qv35(2)AtconstantpressureAtconstantP,
DH=DE+PDVDefineenthalpy:H=E+PV
Hisastatefunction,butitisnotthesystem
energy.Instead,Hisonlyameasureofthesystemenergy!w=-PDV,DE
=qp–PDVE2-E1=qp–P(V2–V1)qp
=(E2+PV2)–(E1+PV1)qp
=H2–H1=DHatconstantpressure,theheatadsorbedorreleasedistotallyusedtoincreaseordecreasethesystementhalpy.DE=q+w(2)AtconstantpressureAtcon36AComparisonofDHandDE2Na(s)+2H2O(l)2NaOH(aq)+H2(g)DH=-367.5kJ/molDE=DH-PDVAt250Cand1atm,1moleH2=24.5LPDV=1atmx24.5L=2.5kJDE=-367.5kJ/mol–2.5kJ/mol=-370.0kJ/mol6.4AComparisonofDHandDE2Na(37DH(Enthalpychange):H(products)–H(reactants)Hproducts<HreactantsDH<0Hproducts>HreactantsDH>0H(Enthalpy):describetheheatflowinaprocessthatoccursatconstantpressure.DH(Enthalpychange):H(prod38ThermochemicalEquationsH2O(s)H2O(l)DH=6.01kJSystemabsorbsheatEndothermicDH>0Itmeansthat:
6.01kJareabsorbedbyonemoleoficethatmeltsat00Cand1atm.ThermochemicalEquationsH2O(s39H2O(s)H2O(l)DH=6.01kJThermochemicalEquationsIftheequationisreverse,thesignofDHmustchangeH2O(l)H2O(s)DH=-6.01kJIfbothsidesaremutipliedbyn,DHmustchangebyn.2H2O(s)2H2O(l)DH=2x6.01
=12.0kJThephysicalstatesmustbeallspecifiedH2O(l)H2O(g)DH=44.0kJH2O(s)H2O(l)DH=640Howmuchheatisevolvedwhen266gofwhitephosphorus(P4)burninair?P4
(s)+5O2
(g)P4O10
(s)
DH=-3013kJ266gP41molP4123.9gP4x3013kJ1molP4x=6470kJHowmuchheatisevolvedwhen41化学原理Chemistry课件-post+2+thermochemistry42theabsolutevalueofenthalpycannotbemeasured.i.e.
DHfo=0foranyelementinitsmoststableform.DH0(O2,g)=0fDH0(O3,g)=142kJ/molfDH0(C,graphite)=0fDH0(C,diamond)=1.90kJ/molfHowtomakeatheoreticalcalculation?Canweestablishareferencepoint?
DHfo
Standardenthalpyofformationtheheatchangeresultswhenonemoleofacompoundisformedat1atmfromitselementsinthemoststableform.C(s,graphite)+O2(g)=CO2(g)DHrxn0=-393.5kJThen,DHf0(CO2,g)=-393.5kJ/moltheabsolutevalueofenthalpy43DHorxn=(H2+H3)–H1
Ca(s)O2(g)C(s,graphite)32H4
Ca(s)O2(g)12H5DHoa
=H4–H1
DHoc
=H2–H5
DHod
=H3–H6
CaCO3(s)CaO(s)+CO2(g)H1H2H3O2(g)C(s,graphite)H6+DHob
=(H5+H6)–H4DHorxn=DHoa+DHob+
DHoc+
DHodDHrxn=[DH
(CaO,s)
+DH
(CO2,g)]–
DH(CaCO3,s)oofofofof=-DH(CaCO3,s)of=DH(CaO,s)of=DH(CO2,g)1atmDHorxn=(H2+H3)–H144化学原理Chemistry课件-post+2+thermochemistry45Thestandardenthalpyofreactioncarriedoutat1atm.aA+bBcC+dDDH0rxndDH0(D)fcDH0(C)f=[+]-bDH0(B)faDH0(A)f[+]Benzene(C6H6)burnsinairtoproducecarbondioxideandliquidwater.Howmuchheatisreleasedpermoleofbenzenecombusted?Thesta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东酒店管理职业技术学院《经典剧目排练》2023-2024学年第一学期期末试卷
- 广东交通职业技术学院《医学是什么》2023-2024学年第一学期期末试卷
- 广东技术师范大学《中医药文化传播》2023-2024学年第一学期期末试卷
- 广东海洋大学《幼儿园玩教具设计与制作》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《中国经济前沿(英语)》2023-2024学年第一学期期末试卷
- 小学生劳动课种花课件
- 《非平稳信号分析》课件
- 赣西科技职业学院《材料力学D》2023-2024学年第一学期期末试卷
- 赣南师范大学《多媒体影像创作》2023-2024学年第一学期期末试卷
- 赣东学院《生化工厂设计》2023-2024学年第一学期期末试卷
- 区块链技术与应用学习通课后章节答案期末考试题库2023年
- 2023学年度广东省广州市天河区九年级(上)期末化学试卷(附详解)
- 拍卖行业务管理制度拍卖行管理制度
- 焊接工序首件检验记录表
- 七年级上学期期末考试历史试卷及答案(人教版)
- 饮品创业项目计划书
- 外国文学史期末考试题库(含答案)
- GB 18384-2020电动汽车安全要求
- FZ/T 52003-1993丙纶短纤维
- 索拉燃气轮机Titan130介绍
- 某银行操作风险管理讲义
评论
0/150
提交评论