




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ThermochemistryChapter6Energychangeofchemicalreaction.ThermochemistryChapter6Energy1Thermalenergytherandommotion.ChemicalenergythebondsofsubstancesNuclearenergy:neutronsandprotonsintheatomElectricalenergy:theflowofelectronsPotentialenergy:virtueofanobject’spositionItisthecapacitytodowork,WhatistheEnergy?andexistsinavarietyoftheforms.Nooneknowshowmuchtheexactenergyis!Thethermodynamicsdealsonlywiththeenergychangesthataccompanychemicalreactions.Thermalenergytherandomm2Systemand
SurroundingsSystemisthespecificpartoftheuniversethatisofinterestinthestudy.Opensystemmass&energyexchangedclosedsystemonlyenergyexchangedIsolatedsystemNothingexchangedSystemandSurroundingsSystem3(1)Heat
istheenergytransferbetween
a
systemanditssurroundingsthatareatdifferenttemperatures.Whatwecanmeasureisonlytheenergychange!Temperatureisameasureofthethermalenergy.Temperature=ThermalEnergy900C400Cgreaterthermalenergy?(1)Heatistheenergytransf4(2)Work,likeheat,
istheenergytransferbetween
a
systemanditssurroundings.Work(w)=Force(F)distance(h)=PAhhAA=PDVPressure-volumework(2)Work,likeheat,istheen5ThermodynamicsStatefunctions
determinedonlybythesystemstate,regardlessofhowitwasachieved(i.e.history).Thepotentialenergyofhiker1isthesameasthatofhiker2.Energychange:DE=Efinal-EinitialOtherchanges:DP=Pfinal-PinitialDV=Vfinal-VinitialDT=Tfinal-TinitialSignificance
itmakesthereasoningandcalculationsimple.ThermodynamicsStatefunctions6DE=q+wq:theheatexchangewiththesurroundings.Attention:
Eisastatefunction,butqandwarenotastatefunction,sincethelattertwoareonlyrelatedtoaprocess.TheFirstLawofThermodynamics:
Theenergyoftheuniversecanbeconvertedfromoneformtoanother,butitcannotbecreatedordestroyed.w:theworkdoneon(orby)thesystem.“+”gainbythesystem“–”lostbythesystemDEsystem+DEsurroundings=0DE=Efinal-EinitialThesystemenergychangeDE=q+w7Exothermicprocess,givesofftheheattothesurroundings.Endothermicprocess,getstheheatfromthesurroundings.2H2
(g)+O2
(g)2H2O(l)+energyH2O(g)H2O(l)+energyenergy+2HgO(s)2Hg(l)+O2
(g)Exothermicprocess,givesoff8Asampleofnitrogengasexpandsinvolumefrom1.6Lto5.4Latconstanttemperature.Whatistheworkdoneinjoulesifthegasexpands(a)againstavacuumand(b)againstaconstantpressureof3.7atm?w=-PDV(a)DV=5.4L–1.6L=3.8LP=0atmW=-0atmx3.8L=0L•atm=0joules(b)DV=5.4L–1.6L=3.8LP=3.7atmw=-3.7atmx3.8L=-14L•atmw=-14L•atmx101.3J1L•atm=-1400JAsampleofnitrogengasexpan9DE=q+wDV=0,w=0DE=qvAtconstantvolume,theheatadsorbedorreleasedtoitssurroundingistotallyusedtoincreaseordecreasethesysteminternalenergy.AtconstantvolumeDE=q+wDV=0,w=0DE=qv10(2)AtconstantpressureAtconstantP,
DH=DE+PDVDefineenthalpy:H=E+PV
Hisastatefunction,butitisnotthesystem
energy.Instead,Hisonlyameasureofthesystemenergy!w=-PDV,DE
=qp–PDVE2-E1=qp–P(V2–V1)qp
=(E2+PV2)–(E1+PV1)qp
=H2–H1=DHatconstantpressure,theheatadsorbedorreleasedistotallyusedtoincreaseordecreasethesystementhalpy.DE=q+w(2)AtconstantpressureAtcon11AComparisonofDHandDE2Na(s)+2H2O(l)2NaOH(aq)+H2(g)DH=-367.5kJ/molDE=DH-PDVAt250Cand1atm,1moleH2=24.5LPDV=1atmx24.5L=2.5kJDE=-367.5kJ/mol–2.5kJ/mol=-370.0kJ/mol6.4AComparisonofDHandDE2Na(12DH(Enthalpychange):H(products)–H(reactants)Hproducts<HreactantsDH<0Hproducts>HreactantsDH>0H(Enthalpy):describetheheatflowinaprocessthatoccursatconstantpressure.DH(Enthalpychange):H(prod13ThermochemicalEquationsH2O(s)H2O(l)DH=6.01kJSystemabsorbsheatEndothermicDH>0Itmeansthat:
6.01kJareabsorbedbyonemoleoficethatmeltsat00Cand1atm.ThermochemicalEquationsH2O(s14H2O(s)H2O(l)DH=6.01kJThermochemicalEquationsIftheequationisreverse,thesignofDHmustchangeH2O(l)H2O(s)DH=-6.01kJIfbothsidesaremutipliedbyn,DHmustchangebyn.2H2O(s)2H2O(l)DH=2x6.01
=12.0kJThephysicalstatesmustbeallspecifiedH2O(l)H2O(g)DH=44.0kJH2O(s)H2O(l)DH=615Howmuchheatisevolvedwhen266gofwhitephosphorus(P4)burninair?P4
(s)+5O2
(g)P4O10
(s)
DH=-3013kJ266gP41molP4123.9gP4x3013kJ1molP4x=6470kJHowmuchheatisevolvedwhen16化学原理Chemistry课件-post+2+thermochemistry17theabsolutevalueofenthalpycannotbemeasured.i.e.
DHfo=0foranyelementinitsmoststableform.DH0(O2,g)=0fDH0(O3,g)=142kJ/molfDH0(C,graphite)=0fDH0(C,diamond)=1.90kJ/molfHowtomakeatheoreticalcalculation?Canweestablishareferencepoint?
DHfo
Standardenthalpyofformationtheheatchangeresultswhenonemoleofacompoundisformedat1atmfromitselementsinthemoststableform.C(s,graphite)+O2(g)=CO2(g)DHrxn0=-393.5kJThen,DHf0(CO2,g)=-393.5kJ/moltheabsolutevalueofenthalpy18DHorxn=(H2+H3)–H1
Ca(s)O2(g)C(s,graphite)32H4
Ca(s)O2(g)12H5DHoa
=H4–H1
DHoc
=H2–H5
DHod
=H3–H6
CaCO3(s)CaO(s)+CO2(g)H1H2H3O2(g)C(s,graphite)H6+DHob
=(H5+H6)–H4DHorxn=DHoa+DHob+
DHoc+
DHodDHrxn=[DH
(CaO,s)
+DH
(CO2,g)]–
DH(CaCO3,s)oofofofof=-DH(CaCO3,s)of=DH(CaO,s)of=DH(CO2,g)1atmDHorxn=(H2+H3)–H119化学原理Chemistry课件-post+2+thermochemistry20Thestandardenthalpyofreactioncarriedoutat1atm.aA+bBcC+dDDH0rxndDH0(D)fcDH0(C)f=[+]-bDH0(B)faDH0(A)f[+]Benzene(C6H6)burnsinairtoproducecarbondioxideandliquidwater.Howmuchheatisreleasedpermoleofbenzenecombusted?Thestandardenthalpyofformationofbenzeneis49.04kJ/mol.2C6H6
(l)+15O2
(g)12CO2
(g)+6H2O(l)=[12(–393.5)+6(–187.6)]–[249.04+0]=-5946kJ-5946kJ2mol=-2973kJ/molC6H6=[12(CO2,g)+6(H2O,l)]–[2(C6H6,l)+15(O2,g)]DH0rxnDH0fDH0
fDH0
fDH0
fThestandardenthalpyofreact21Hess’sLaw:Whenreactantsareconvertedtoproducts,thechangeinenthalpyisthesameregardlessofthereactiontakingplaceinonesteporinaseriesofsteps.HowmuchisDHofforCS2(l)giventhat:C(graphite)+O2
(g)CO2
(g)
DH0=-393.5kJrxnS(rhombic)+O2
(g)SO2
(g)
DH0=-296.1kJrxnCS2(l)+3O2
(g)CO2
(g)+2SO2
(g)
DH0=-1072kJrxnC(graphite)+2S(rhombic)CS2(l)rxnC(graphite)+O2
(g)CO2
(g)
DH0
=-393.5kJ2S(rhombic)+2O2
(g)2SO2
(g)
DH0
=-296.1x2kJrxnCO2(g)+2SO2
(g)CS2
(l)+3O2
(g)
DH0
=+1072kJrxn+C(graphite)+2S(rhombic)CS2(l)DH0
=-393.5+(2x-296.1)+1072=86.3kJrxnHess’sLaw:Whenreactantsar22DHsoln=Step1+Step2=788–784=4kJ/molStep1LatticeenergyStep2hydrationDissolutionProcessofNaClDHsoln=Step1+Step2Step23Whichsubstance(s)couldbeusedformeltingice?Whichsubstance(s)couldbeusedforacoldpack?Whichsubstance(s)couldbeus24Exercises:6.196.546.806.1046.113
Exercises:25ThermochemistryChapter6Energychangeofchemicalreaction.ThermochemistryChapter6Energy26Thermalenergytherandommotion.ChemicalenergythebondsofsubstancesNuclearenergy:neutronsandprotonsintheatomElectricalenergy:theflowofelectronsPotentialenergy:virtueofanobject’spositionItisthecapacitytodowork,WhatistheEnergy?andexistsinavarietyoftheforms.Nooneknowshowmuchtheexactenergyis!Thethermodynamicsdealsonlywiththeenergychangesthataccompanychemicalreactions.Thermalenergytherandomm27Systemand
SurroundingsSystemisthespecificpartoftheuniversethatisofinterestinthestudy.Opensystemmass&energyexchangedclosedsystemonlyenergyexchangedIsolatedsystemNothingexchangedSystemandSurroundingsSystem28(1)Heat
istheenergytransferbetween
a
systemanditssurroundingsthatareatdifferenttemperatures.Whatwecanmeasureisonlytheenergychange!Temperatureisameasureofthethermalenergy.Temperature=ThermalEnergy900C400Cgreaterthermalenergy?(1)Heatistheenergytransf29(2)Work,likeheat,
istheenergytransferbetween
a
systemanditssurroundings.Work(w)=Force(F)distance(h)=PAhhAA=PDVPressure-volumework(2)Work,likeheat,istheen30ThermodynamicsStatefunctions
determinedonlybythesystemstate,regardlessofhowitwasachieved(i.e.history).Thepotentialenergyofhiker1isthesameasthatofhiker2.Energychange:DE=Efinal-EinitialOtherchanges:DP=Pfinal-PinitialDV=Vfinal-VinitialDT=Tfinal-TinitialSignificance
itmakesthereasoningandcalculationsimple.ThermodynamicsStatefunctions31DE=q+wq:theheatexchangewiththesurroundings.Attention:
Eisastatefunction,butqandwarenotastatefunction,sincethelattertwoareonlyrelatedtoaprocess.TheFirstLawofThermodynamics:
Theenergyoftheuniversecanbeconvertedfromoneformtoanother,butitcannotbecreatedordestroyed.w:theworkdoneon(orby)thesystem.“+”gainbythesystem“–”lostbythesystemDEsystem+DEsurroundings=0DE=Efinal-EinitialThesystemenergychangeDE=q+w32Exothermicprocess,givesofftheheattothesurroundings.Endothermicprocess,getstheheatfromthesurroundings.2H2
(g)+O2
(g)2H2O(l)+energyH2O(g)H2O(l)+energyenergy+2HgO(s)2Hg(l)+O2
(g)Exothermicprocess,givesoff33Asampleofnitrogengasexpandsinvolumefrom1.6Lto5.4Latconstanttemperature.Whatistheworkdoneinjoulesifthegasexpands(a)againstavacuumand(b)againstaconstantpressureof3.7atm?w=-PDV(a)DV=5.4L–1.6L=3.8LP=0atmW=-0atmx3.8L=0L•atm=0joules(b)DV=5.4L–1.6L=3.8LP=3.7atmw=-3.7atmx3.8L=-14L•atmw=-14L•atmx101.3J1L•atm=-1400JAsampleofnitrogengasexpan34DE=q+wDV=0,w=0DE=qvAtconstantvolume,theheatadsorbedorreleasedtoitssurroundingistotallyusedtoincreaseordecreasethesysteminternalenergy.AtconstantvolumeDE=q+wDV=0,w=0DE=qv35(2)AtconstantpressureAtconstantP,
DH=DE+PDVDefineenthalpy:H=E+PV
Hisastatefunction,butitisnotthesystem
energy.Instead,Hisonlyameasureofthesystemenergy!w=-PDV,DE
=qp–PDVE2-E1=qp–P(V2–V1)qp
=(E2+PV2)–(E1+PV1)qp
=H2–H1=DHatconstantpressure,theheatadsorbedorreleasedistotallyusedtoincreaseordecreasethesystementhalpy.DE=q+w(2)AtconstantpressureAtcon36AComparisonofDHandDE2Na(s)+2H2O(l)2NaOH(aq)+H2(g)DH=-367.5kJ/molDE=DH-PDVAt250Cand1atm,1moleH2=24.5LPDV=1atmx24.5L=2.5kJDE=-367.5kJ/mol–2.5kJ/mol=-370.0kJ/mol6.4AComparisonofDHandDE2Na(37DH(Enthalpychange):H(products)–H(reactants)Hproducts<HreactantsDH<0Hproducts>HreactantsDH>0H(Enthalpy):describetheheatflowinaprocessthatoccursatconstantpressure.DH(Enthalpychange):H(prod38ThermochemicalEquationsH2O(s)H2O(l)DH=6.01kJSystemabsorbsheatEndothermicDH>0Itmeansthat:
6.01kJareabsorbedbyonemoleoficethatmeltsat00Cand1atm.ThermochemicalEquationsH2O(s39H2O(s)H2O(l)DH=6.01kJThermochemicalEquationsIftheequationisreverse,thesignofDHmustchangeH2O(l)H2O(s)DH=-6.01kJIfbothsidesaremutipliedbyn,DHmustchangebyn.2H2O(s)2H2O(l)DH=2x6.01
=12.0kJThephysicalstatesmustbeallspecifiedH2O(l)H2O(g)DH=44.0kJH2O(s)H2O(l)DH=640Howmuchheatisevolvedwhen266gofwhitephosphorus(P4)burninair?P4
(s)+5O2
(g)P4O10
(s)
DH=-3013kJ266gP41molP4123.9gP4x3013kJ1molP4x=6470kJHowmuchheatisevolvedwhen41化学原理Chemistry课件-post+2+thermochemistry42theabsolutevalueofenthalpycannotbemeasured.i.e.
DHfo=0foranyelementinitsmoststableform.DH0(O2,g)=0fDH0(O3,g)=142kJ/molfDH0(C,graphite)=0fDH0(C,diamond)=1.90kJ/molfHowtomakeatheoreticalcalculation?Canweestablishareferencepoint?
DHfo
Standardenthalpyofformationtheheatchangeresultswhenonemoleofacompoundisformedat1atmfromitselementsinthemoststableform.C(s,graphite)+O2(g)=CO2(g)DHrxn0=-393.5kJThen,DHf0(CO2,g)=-393.5kJ/moltheabsolutevalueofenthalpy43DHorxn=(H2+H3)–H1
Ca(s)O2(g)C(s,graphite)32H4
Ca(s)O2(g)12H5DHoa
=H4–H1
DHoc
=H2–H5
DHod
=H3–H6
CaCO3(s)CaO(s)+CO2(g)H1H2H3O2(g)C(s,graphite)H6+DHob
=(H5+H6)–H4DHorxn=DHoa+DHob+
DHoc+
DHodDHrxn=[DH
(CaO,s)
+DH
(CO2,g)]–
DH(CaCO3,s)oofofofof=-DH(CaCO3,s)of=DH(CaO,s)of=DH(CO2,g)1atmDHorxn=(H2+H3)–H144化学原理Chemistry课件-post+2+thermochemistry45Thestandardenthalpyofreactioncarriedoutat1atm.aA+bBcC+dDDH0rxndDH0(D)fcDH0(C)f=[+]-bDH0(B)faDH0(A)f[+]Benzene(C6H6)burnsinairtoproducecarbondioxideandliquidwater.Howmuchheatisreleasedpermoleofbenzenecombusted?Thesta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国真空银杯市场调查研究报告
- 2025至2030年中国溶剂绿数据监测研究报告
- 2025至2030年中国柔白亮泽面膜霜数据监测研究报告
- 2025至2030年中国接线端子陶瓷市场分析及竞争策略研究报告
- 2025至2030年中国变径管件市场调查研究报告
- 2025年中国无线教学扩音机市场调查研究报告
- 2025━2030年微生物培养系统行业深度研究报告
- 2025-2035年全球及中国矿棉保温行业市场发展现状及发展前景研究报告
- 2025年日用玻璃制品合作协议书
- 河南省普通高中2024年招生全国统一考试考试说明跟踪卷(七)数学试题
- 2024年郑州市公安机关招聘警务辅助人员笔试真题
- 2025年贵州贵安新区产业发展控股集团有限公司招聘笔试参考题库附带答案详解
- 2.3品味美好情感 课 件 -2024-2025学年统编版道德与法治七年级下册
- 第六节-固定收益证券知识分享
- 中国企业智能化成熟度报告(2024) -企业智能化转型进入2.0时代
- 肇庆市劳动合同
- 电力施工安全技术交底记录表
- E4A使用手册(DOC)
- (民法典版)离婚登记申请受理回执单
- 食品质量控制管理方案
- 普通中专毕业生登记表格模板(共4页)
评论
0/150
提交评论