版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知幂函数的图象过(4,2)点,则A. B.C. D.2.已知集合,,则A. B.C. D.3.设函数与的图象的交点为,,则所在的区间是A. B.C. D.4.若直线与圆的两个交点关于直线对称,则,的直线分别为()A., B.,C., D.,5.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.6.已知集合,,有以下结论:①;②;③.其中错误的是()A.①③ B.②③C.①② D.①②③7.为了得到函数的图像,只需将函数的图像上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.设命题:,则的否定为()A. B.C. D.9.下列函数中,既是奇函数又在定义域上是增函数的为A. B.C. D.10.设a>0且a≠1,则“函数fx=ax在R上是减函数”是“函数gxA.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.某池塘里原有一块浮萍,浮萍蔓延后的面积(单位:平方米)与时间(单位:月)的关系式为(且)图象如图所示.则下列结论:①浮萍蔓延每个月增长的面积都相同;②浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的;③浮萍蔓延每个月增长率相同,都是;④浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少.其中正确结论的序号是_____12.若关于的方程只有一个实根,则实数的取值范围是______.13.函数的最大值为().14.已知定义在上的偶函数,当时,,则________15.函数的单调递增区间为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.17.(1)已知是奇函数,求的值;(2)画出函数图象,并利用图象回答:为何值时,方程无解?有一解?有两解.18.主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线,其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)证明:为定值19.已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值20.计算或化简:(1);(2)21.已知的内角所对的边分别为,(1)求的值;(2)若,求面积
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】设函数式为,代入点(4,2)得考点:幂函数2、C【解析】利用一元二次不等式的解法化简集合,再根据集合的基本运算进行求解即可【详解】因为,,所以,故选C【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.3、A【解析】设,则,有零点的判断定理可得函数的零点在区间内,即所在的区间是.选A4、A【解析】由圆的对称性可得过圆的圆心且直线与直线垂直,从而可求出.【详解】因为直线与圆的两个交点关于直线对称,故直线与直线垂直,且直线过圆心,所以,,所以,.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.5、B【解析】所以,所以。故选B。6、C【解析】解出不等式,得到集合,然后逐一判断即可.【详解】由可得所以,故①错;,②错;,③对,故选:C7、B【解析】利用诱导公式,的图象变换规律,得出结论【详解】解:为了得到函数的图象,只需将函数图象上所有的点向右平移个单位长度,故选:B8、B【解析】本题根据题意直接写出命题的否定即可.【详解】解:因为命题:,所以的否定:,故选:B【点睛】本题考查含有一个量词的命题的否定,是基础题.9、D【解析】选项,在定义域上是增函数,但是是非奇非偶函数,故错;选项,是偶函数,且在上是增函数,在上是减函数,故错;选项,是奇函数且在和上单调递减,故错;选项,是奇函数,且在上是增函数,故正确综上所述,故选10、A【解析】函数f(x)=ax在R上是减函数,根据指数函数的单调性得出0<a<1;函数g(x)=(4-a)⋅x在R上是增函数,得出0<a<4且【详解】函数f(x)=ax在R上是减函数,则函数g(x)=(4-a)⋅x在R上是增函数,则4-a>0,而a>0且a≠1,解得:0<a<4且a≠1,故“函数fx=ax在R上是减函数”是“函数gx故选:A.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、②④【解析】由,可求得的值,可得出,计算出萍蔓延月至月份增长的面积和月至月份增长的面积,可判断①的正误;计算出浮萍蔓延个月后的面积和浮萍蔓延个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【详解】由已知可得,则.对于①,浮萍蔓延月至月份增长的面积为(平方米),浮萍蔓延月至月份增长的面积为(平方米),①错;对于②,浮萍蔓延个月后的面积为(平方米),浮萍蔓延个月后的面积为(平方米),所以,浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的,②对;对于③,浮萍蔓延第至个月的增长率为,所以,浮萍蔓延每个月增长率相同,都是,③错;对于④,浮萍蔓延到平方米所经过的时间、蔓延到平方米所经过的时间的和蔓延到平方米的时间分别为、、,则,,,所以,,所以,浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少,④对.故答案为:②④.12、【解析】把关于的方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,结合图象,即可求解.【详解】由题意,关于方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,如图所示,结合图象可知,当直线介于和之间的直线或与重合的直线符合题意,又由直线在轴上的截距分别为,所以实数的取值范围是.故答案为.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中把方程的解转化为直线与曲线的图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及数形结合思想的应用,属于基础题.13、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.14、6【解析】利用函数是偶函数,,代入求值.【详解】是偶函数,.故答案6【点睛】本题考查利用函数的奇偶性求值,意在考查转化与变形,属于简单题型.15、【解析】首先将函数拆分成内外层函数,根据复合函数单调性的判断方法求解.【详解】函数分成内外层函数,是减函数,根据“同增异减”的判断方法可知求函数的单调递增区间,需求内层函数的减区间,函数的对称轴是,的减区间是,所以函数的单调递增区间为.故答案为:【点睛】本题考查复合函数的单调性,意在考查基本的判断方法,属于基础题型,判断复合函数的单调性根据“同增异减”的方法判断,当内外层单调性一致时为增函数,当内外层函数单调性不一致时为减函数,有时还需注意定义域.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得17、(1);(2)时,无解;时,有两个解;或时,有一个解.【解析】(1)由奇函数的定义,,代入即可得出结果.(2)画出函数图象,结合函数图象可得出结果.【详解】(1)为奇函数,,所以(2)函数图象如图,可知时,无解;时,有两个解;或时,有一个解【点睛】本题考查了奇函数的定义,考查了运算求解能力和画图能力,数形结合思想,属于基础题目.18、(1);(2)证明见解析.【解析】(1)首先根据振幅为2求出A,将点(1,-2)代入解析式即可解得;(2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【详解】(1)∵振幅为2,A>0,∴A=2,,将点(1,-2)代入得:,∵,∴,∴,∴,易知与关于x轴对称,所以.(2)由(1).即定值为0.19、(Ⅰ)(Ⅱ)【解析】(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【点睛】本题主要考查了正余弦定理应用,运用二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大酒店装饰装修合同范本
- 供水站合同范本
- 项目信托合同范本
- 《肾衰3号颗粒剂降低蛋白尿延缓慢性肾功不全恶化的研究》
- 《协同治理理论视角下T市大气污染治理问题研究》
- 《EmimAA离子液体与石墨烯相互作用及微观结构的理论研究》
- 全屋定制柜书面合同范本
- 轻型货物运输合同三篇
- 《基于靛红的环化反应和还原反应构建取代吖啶和2-吲哚酮的反应研究》
- 房子卖了怎么写合同范本
- 河南省洛阳市2022-2023学年九年级上学期期末数学试题
- 2024年大学新生开学第一课-如何开启你的大学生活课件
- 新苏教版四年级上册科学全册知识点
- 电力专业数据传输(EPDT)通信系统 设备功能技术要求和测试方法
- 2023年高中学业水平考核美术试题
- 质保书模板(2024版)
- 统编版2024年新教材七年级上册道德与法治8.1《认识生命》教案
- 注水泵工(中级)技能鉴定理论考试题库(含答案)
- 胃癌介入治疗的临床分析与疗效评价课件
- DL∕T 1683-2017 1000MW等级超超临界机组运行导则
- 基于LoRa通信的智能家居系统设计及研究
评论
0/150
提交评论