版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.2.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.3.已知,,,则的大小关系为A B.C. D.4.已知函数,下列关于该函数结论错误的是()A.的图象关于直线对称 B.的一个周期是C.的最大值为 D.是区间上的增函数5.若正实数满足,(为自然对数的底数),则()A. B.C. D.6.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20137.设实数满足,函数的最小值为()A. B.C. D.68.已知函数是定义域为的奇函数,且满足,当时,,则A.4 B.2C.-2 D.-49.实数,,的大小关系正确的是()A. B.C. D.10.与直线垂直,且在轴上的截距为-2的直线方程为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数的定义域为_________12.函数的图象必过定点___________13.集合的子集个数为______14.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________15.等于_______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)判断f(x)的奇偶性,并说明理由;(2)用定义证明f(x)在(1,+∞)上单调递增;(3)求f(x)在[-2,-1]上的值域17.计算求解(1)(2)已知,,求的值18.已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)若函数,求函数零点.19.已知函数(1)请在给定的坐标系中画出此函数的图象;(2)写出此函数的定义域及单调区间,并写出值域.20.已知(1)若,求的值;(2)若,且,求实数的值21.已知为第二象限角,且(1)求与的值;(2)的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题2、A【解析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.3、A【解析】利用对数的性质,比较a,b的大小,将b,c与1进行比较,即可得出答案【详解】令,结合对数函数性质,单调递减,,,.【点睛】本道题考查了对数、指数比较大小问题,结合相应性质,即可得出答案4、C【解析】利用诱导公式证明可判断A;利用可判断B;利用三角函数的性质可判断C;利用复合函数的单调性可判断D.【详解】对于A,,所以的图象关于直线对称,故A正确;对于B,,所以的一个周期是,故B正确;对于C,,所以的最大值为,当时,,取得最大值,所以的最大值为,故C不正确;对于D,在上单调递增,,在上单调递增,在上单调递减,,根据复合函数的单调性易知,在上单调递增,所以是区间上的增函数,故D正确.故选:C.【点睛】关键点点睛:解决本题的关键是熟练掌握函数对称性及周期性的判定及三角函数的图象与性质.5、C【解析】由指数式与对数式互化为相同形式后求解【详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C6、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为7、A【解析】将函数变形为,再根据基本不等式求解即可得答案.详解】解:由题意,所以,所以,当且仅当,即时等号成立,所以函数的最小值为.故选:A【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方8、B【解析】先利用周期性将转化为,再利用奇函数的性质将转化成,然后利用时的函数表达式即可求值.【详解】由可知,为周期函数,周期为,所以,又因为为奇函数,有,因为,所以,答案为B.【点睛】主要考查函数的周期性,奇偶性的应用,属于中档题.9、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.10、A【解析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为,∴所求直线方程为,整理为故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据被开放式大于等于零和对数有意义,解对数不等式得到结果即可.【详解】∵函数∴x>0且,∴∴函数的定义域为故答案为【点睛】本题考查了根据函数的解析式求定义域的应用问题,是基础题目12、【解析】f(x)=k(x-1)-ax-1,x=1时,y=f(x)=-1,∴图象必过定点(1,-1).13、32【解析】由n个元素组成的集合,集合的子集个数为个.【详解】解:由题意得,则A的子集个数为故答案为:32.14、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等15、【解析】直接利用诱导公式即可求解.【详解】由诱导公式得:.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)f(x)为奇函数,理由见解析(2)证明见解析(3)[-,-2]【解析】(1)根据奇偶性的定义判断;(2)由单调性的定义证明;(3)由单调性得值域【小问1详解】f(x)为奇函数由于f(x)的定义域为,关于原点对称,且,所以f(x)为在上的奇函数(画图正确,由图得出正确结论,也可以得分)【小问2详解】证明:设任意,,有由,得,,即,所以函数f(x)在(1,+∞)上单调递增【小问3详解】由(1),(2)得函数f(x)在[-2,-1]上单调递增,故f(x)的最大值为,最小值为,所以f(x)在[-2,-1]的值域为[-,-2]17、(1);(2).【解析】(1)利用对数运算法则直接计算作答.(2)利用对数换底公式及对数运算法则计算作答.【小问1详解】.【小问2详解】因,,所以.18、(1)(2)为奇函数(3)【解析】(1)要使函数有意义,必须满足,从而得到定义域;(2)利用奇偶性定义判断奇偶性;(3)函数的零点即方程的根.即的根,又为奇函数,所以.易证:在定义域上为增函数,∴由得,从而解得函数的零点.试题解析:(1)要使函数有意义,必须满足,∴,因此,的定义域为.(2)函数为奇函数.∵的定义域为,对内的任意有:,所以,为奇函数.(3)函数的零点即方程的根.即的根,又为奇函数,所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定义域上为增函数,∴由得解得或,验证当时,不符合题意,当时,符合题意,所以函数的零点为.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.19、(1)答案见解析(2)答案见解析【解析】(1)根据函数解析式,分别作出各段图象即可;(2)由解析式可直接得出函数的定义域,由图观察,即可得到单调区间以及值域【详解】图象如图所示(2)定义域为或或,增区间为,减区间为,,,,值域为20、(1)(2)【解析】(1)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合作担保:合伙人责任分配协议
- 行业洞察与趋势预测能力培养计划
- 2024年三人股权分配协议
- 2024年土地使用权租赁合同模板3篇
- 2024年度跨境电子商务合作合同
- 商务会所厨师劳务聘用协议
- 体育馆应急照明安装合同
- 商业大厦防水施工合同
- 环保监测升降机租赁协议
- 买卖学校车位协议范本
- 2024年陕煤集团招聘笔试参考题库含答案解析
- 博途V13内部培训-S7-1500模板
- 2003-2019年佛山市社保缴费比例和基数(无图片)
- 认可标识使用和认可状态声明管理程序
- 高三一本“临界生”动员会课件
- 华为研发类员工绩效考核表(PBC)考核项
- (15.1.1)-绪论2思想政治教育概念的历史演变
- 《0-3岁婴幼儿保育与教育》
- 埋弧炉变压器无功补偿的安全运行概论
- 患者跌倒事件RCA分析
- 中国糖尿病足诊治临床路径(2023版)-
评论
0/150
提交评论