版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.函数的定义域为A B.C. D.2.函数在上的图象为A. B.C. D.3.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}4.是定义在上的函数,,且在上递减,下列不等式一定成立的是A. B.C. D.5.已知函数,有下面四个结论:①的一个周期为;②的图像关于直线对称;③当时,的值域是;④在(单调递减,其中正确结论的个数是()A.1 B.2C.3 D.46.为了得到函数的图像,只需将函数的图像()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.下列函数是奇函数,且在上单调递增的是()A. B.C. D.8.已知,若函数在上为减函数,且函数在上有最大值,则a的取值范围为()A. B.C. D.9.若方程表示圆,则实数的取值范围是A. B.C. D.10.若方程表示圆,则实数的取值范围为()A. B.C. D.11.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是A. B.C. D.12.已知函数的上单调递减,则的取值范围是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为___cm.14.已知向量,,,,则与夹角的余弦值为______15.已知函数则的值为_______16.在空间直角坐标系中,点在平面上的射影为点,在平面上的射影为点,则__________三、解答题(本大题共6小题,共70分)17.已知函数的图象在直线的下方且无限接近直线.(1)判断函数的单调性(写出判断说明即可,无需证明),并求函数解析式;(2)判断函数的奇偶性并用定义证明;(3)求函数的值域.18.已知的内角所对的边分别为,(1)求的值;(2)若,求面积19.已知函数,图象上相邻的最高点与最低点的横坐标相差,______;(1)①的一条对称轴且;②的一个对称中心,且在上单调递减;③向左平移个单位得到的图象关于轴对称且从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(2)在(1)的情况下,令,,若存在使得成立,求实数的取值范围.20.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值21.已知圆过,,且圆心在直线上(1)求此圆的方程(2)求与直线垂直且与圆相切的直线方程(3)若点为圆上任意点,求的面积的最大值22.设是定义在上的偶函数,的图象与的图象关于直线对称,且当时,()求的解析式()若在上为增函数,求的取值范围()是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】要使得有意义,要满足真数大于0,且分母不能为0,即可求出定义域.【详解】要使得有意义,则要满足,解得.答案为C.【点睛】常见的定义域求解要满足:(1)分式:分母0;(2)偶次根式:被开方数0;(3)0次幂:底数0;(4)对数式:真数,底数且;(5):;2、B【解析】直接利用函数的性质奇偶性求出结果【详解】函数的解析式满足,则函数为奇函数,排除CD选项,由可知:,排除A选项.故选B.【点睛】本题考查的知识要点:函数的性质的应用.属中档题.3、B【解析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.4、B【解析】对于A,由为偶函数可得,又,由及在上为减函数得,故A错;对于B,因同理可得,故B对;对于C,因无法比较大小,故C错;对于D,取,则;取,则,故与大小关系不确定,故D错,综上,选B点睛:对于奇函数或偶函数,如果我们知道其一侧的单调性,那么我们可以知道另一侧的单调性,解题时注意转化5、B【解析】函数周期.,故是函数的对称轴.由于,故③错误.,函数在不单调.故有个结论正确.【点睛】本题主要考查三角函数图像与性质,包括了周期性,对称性,值域和单调性.三角函数的周期性,其中正弦和余弦函数的周期都是利用公式来求解,而正切函数函数是利用公式来求解.三角函数的对称轴是使得函数取得最大值或者最小值的地方.对于选择题6、A【解析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.7、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.8、A【解析】由复合函数在上的单调性可构造不等式求得,结合已知可知;当时,,若,可知无最大值;若,可得到,解不等式,与的范围结合可求得结果.【详解】在上为减函数,解得:当时,,此时当,时,在上单调递增无最大值,不合题意当,时,在上单调递减若在上有最大值,解得:,又故选【点睛】本题考查根据复合函数单调性求解参数范围、根据分段函数有最值求解参数范围的问题;关键是能够通过分类讨论的方式得到处于不同范围时在区间内的单调性,进而根据函数有最值构造不等式;易错点是忽略对数真数大于零的要求,造成范围求解错误.9、A【解析】由二元二次方程表示圆的充要条件可知:,解得,故选A考点:圆的一般方程10、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.11、A【解析】汽车启动加速过程,随时间增加路程增加的越来越快,汉使图像是凹形,然后匀速运动,路程是均匀增加即函数图像是直线,最后减速并停止,其路程仍在增加,只是增加的越来越慢即函数图像是凸形.故选A考点:函数图像的特征12、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题二、填空题(本大题共4小题,共20分)13、6π+40【解析】根据角度制与弧度制的互化,可得圆心角,再由扇形的弧长公式,可得弧长,即可求解扇形的周长,得到答案.【详解】由题意,根据角度制与弧度制的互化,可得圆心角,∴由扇形的弧长公式,可得弧长,∴扇形的周长为.【点睛】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.14、【解析】运用平面向量的夹角公式可解决此问题.【详解】根据题意得,,,,故答案为.【点睛】本题考查平面向量夹角公式的简单应用.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).15、【解析】首先计算,再求的值.【详解】,所以.故答案为:16、【解析】因为点在平面上的射影为点,在平面上的射影为点,所以由两点间距离公式可得,故答案为.三、解答题(本大题共6小题,共70分)17、(1)函数在上单调递增,(2)奇函数,证明见解析(3)【解析】(1)根据函数的单调性情况直接判断;(2)根据奇偶性的定义直接判断;(3)由奇偶性直接判断值域.【小问1详解】因为随着增大,减小,即增大,故随增大而增大,所以函数在上单调递增.由的图象在直线下方,且无限接近直线,得,所以函数的解析式.【小问2详解】由(1)得,整理得,函数定义域关于原点对称,,所以函数是奇函数.小问3详解】方法一:由(1)知,由(2)知,函数图象关于原点中心对称,故,所以函数的值域为.方法二:由,得,得,得,得,得,所以函数的值域为.18、(1);(2)【解析】(1)由正弦定理求解即可;(2)由余弦定理求得则面积可求【详解】(1)由正弦定理得故;(2),由余弦定理,,解得因此,【点睛】本题考查正余弦定理解三角形,考查面积公式,熟记公式准确计算是关键,是基础题19、(1)选①②③,;(2).【解析】(1)根据题意可得出函数的最小正周期,可求得的值,根据所选的条件得出关于的表达式,然后结合所选条件进行检验,求出的值,综合可得出函数的解析式;(2)求得,由可计算得出,进而可得出,由参变量分离法得出,利用基本不等式求得的最小值,由此可得出实数的取值范围.【详解】(1)由题意可知,函数的最小正周期为,.选①,因为函数的一条对称轴,则,解得,,所以,的可能取值为、.若,则,则,不合乎题意;若,则,则,合乎题意.所以,;选②,因为函数的一个对称中心,则,解得,,所以,的可能取值为、.若,则,当时,,此时,函数在区间上单调递增,不合乎题意;若,则,当时,,此时,函数在区间上单调递减,合乎题意;所以,;选③,将函数向左平移个单位得到的图象关于轴对称,所得函数为,由于函数的图象关于轴对称,可得,解得,,所以,的可能取值为、.若,则,,不合乎题意;若,则,,合乎题意.所以,;(2)由(1)可知,所以,,当时,,,所以,,所以,,,,,则,由可得,所以,,由基本不等式可得,当且仅当时,等号成立,所以,.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1),;(2),;(3),;(4),.20、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【点睛】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用21、(1)(2)或(3)【解析】(1)一般利用待定系数法,先求出圆心的坐标,再求出圆的半径,即得圆的方程.(2)先设出直线的方程,再利用直线和圆相切求出其中的待定系数.(3)一般利用数形结合分析解答.当三角形的高是d+r时,三角形的面积最大.【详解】(1)易知中点为,,∴的垂直平分线方程为,即,联立,解得则,∴圆的方程为(2)知该直线斜率为,不妨设该直线方程为,由题意有,解得∴该直线方程为或(3),即,圆心到的距离∴点睛:本题的难点在第(3)问方法的选择,选择数形结合分析解答比较方便.数形结合是高中数学里一种重要的数学思想,在解题中要灵活运用.22、(1);(2);(3)见解析.【解析】分析:()当时,,;当时,,从而可得结果;()由题设知,对恒成立,即对恒成立,于是,,从而;()因为为偶函数,故只需研究函数在的最大值,利用导数研究函数的单调性,讨论两种情况,即可筛选出符合题意的正整数.详解:()当时,,;当时,,∴,()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合作担保:合伙人责任分配协议
- 行业洞察与趋势预测能力培养计划
- 2024年三人股权分配协议
- 2024年土地使用权租赁合同模板3篇
- 2024年度跨境电子商务合作合同
- 商务会所厨师劳务聘用协议
- 体育馆应急照明安装合同
- 商业大厦防水施工合同
- 环保监测升降机租赁协议
- 买卖学校车位协议范本
- 简明法语教程自学手册-第13课
- 220千伏线路送电方案
- 化工原理课程设计年产25 万吨苯冷却器的工艺设计
- Unit 2 Extended Reading 导学案-高中英语牛津译林版(2020)必修第二册
- 中国血液透析用血管通路专家共识(第2版)解读
- LY/T 1755-2008国家湿地公园建设规范
- GB/T 25443-2010移动式点焊机
- 政工工作制度15篇
- 跨国公司管理(人力资源管理)课件
- 大线能量焊接用钢的现状与发展讲解课件
- 供应科6S管理成效课件
评论
0/150
提交评论