




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的大致图像为()A. B.C. D.2.若集合,,则()A. B.C. D.3.函数的零点所在的区间为()A.(,1) B.(1,2)C. D.4.设集合M={a|x∈R,x2+ax+1>0},集合N={a|x∈R,(a-3)x+1=0},若命题p:a∈M,命题q:a∈N,那么命题p是命题q的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为()A.1,25 B.1,20C.3,20 D.3,256.将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,则函数在上的最大值和最小值分别为A. B.C. D.7.集合{0,1,2}的所有真子集的个数是A.5 B.6C.7 D.88.如图,在中,是的中点,若,则实数的值是A. B.1C. D.9.已知,,则在方向上的投影为()A. B.C. D.10.若向量,,满足,则A.1 B.2C.3 D.4二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数(,)的部分图象如图所示,则的值为12.已知函数,若,则_____13.函数定义域是____________14.若则函数的最小值为________15.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.直线过定点,交、正半轴于、两点,其中为坐标原点.(Ⅰ)当的倾斜角为时,斜边的中点为,求;(Ⅱ)记直线在、轴上的截距分别为,其中,求的最小值.17.函数()(1)当时,①求函数的单调区间;②求函数在区间的值域;(2)当时,记函数的最大值为,求的表达式18.已知f(x)是定义在R上偶函数,且当x≥0时,(1)用定义法证明f(x)在(0,+∞)上单调递增;(2)求不等式f(x)>0的解集.19.某产品在出厂前需要经过质检,质检分为2个过程.第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程.第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可以出厂.设每位质检员检验结果为合格的概率均为,且每位质检员的检验结果相互独立(1)求产品需要进行第2个过程的概率;(2)求产品不可以出厂的概率20.已知函数(其中为常数)的图象经过两点.(1)判断并证明函数的奇偶性;(2)证明函数在区间上单调递增.21.已知角在第二象限,且(1)求的值;(2)若,且为第一象限角,求的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】分析函数的定义域、奇偶性,以及的值,结合排除法可得出合适的选项.【详解】对任意的,,则函数的定义域为,排除C选项;,,所以,函数为偶函数,排除B选项,因为,排除A选项.故选:D.2、A【解析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答.【详解】解不等式,即,解得,则,而,所以.故选:A3、D【解析】为定义域内的单调递增函数,计算选项中各个变量的函数值,判断在正负,即可求出零点所在区间.【详解】解:在上为单调递增函数,又,所以的零点所在的区间为.故选:D.4、A【解析】由题意,对于集合M,△=a2-4<0,解得-2<a<2;对于集合N,a≠3若-2<a<2,则a≠3;反之,不成立.命题p是命题q的充分不必要条件.故选A5、A【解析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔【详解】解:因为余1,所以在抽取过程中被剔除的个体数是1;抽样间隔是25故选:A6、A【解析】先化简f(x),再结合函数图象的伸缩变换,得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,求出函数的最大值与最小值【详解】∵函数,∴g(x)∵x∈∴4x∈∴当4x时,g(x)取最大值1;当4x时,g(x)取最小值故选A.7、C【解析】集合{0,1,2}中有三个元素,因此其真子集个数为.故选:C.8、C【解析】以作为基底表示出,利用平面向量基本定理,即可求出【详解】∵分别是的中点,∴.又,∴.故选C.【点睛】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力9、A【解析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【详解】,,在方向上的投影为:.故选:A【点睛】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.10、A【解析】根据向量的坐标运算,求得,再根据向量的数量积的坐标运算,即可求解,得到答案.【详解】由题意,向量,,,则向量,所以,解得,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;12、-2020【解析】根据题意,设g(x)=f(x)+1=asinx+btanx,分析g(x)为奇函数,结合函数的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,计算可得答案【详解】根据题意,函数f(x)=asinx+btanx﹣1,设g(x)=f(x)+1=asinx+btanx,有g(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),则函数g(x)为奇函数,则g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,则f(2)=﹣2020;故答案为-2020【点睛】本题考查函数奇偶性的性质以及应用,构造函数g(x)=f(x)+1是解题的关键,属于中档题13、【解析】根据偶次方根式下被开方数非负,有因此函数定义域,注意结果要写出解集性质.考点:函数定义域14、1【解析】结合图象可得答案.【详解】如图,函数在同一坐标系中,且,所以在时有最小值,即.故答案为:1.15、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(Ⅰ);(Ⅱ)9.【解析】(Ⅰ)首先求得直线方程与坐标轴的交点,然后求解的值即可;(Ⅱ)由题意结合截距式方程和均值不等式的结论求解的最小值即可.【详解】(Ⅰ),令令,.(Ⅱ)设,则,,当时,的最小值.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误17、(1)①的单调递增区间为,;单调递减区间为;②(2)【解析】(1)①分别在和两种情况下,结合二次函数的单调性可确定结果;②根据①中单调性可确定最值点,由最值可确定值域;(2)分别在、、三种情况下,结合二次函数对称轴位置与端点值的大小关系可确定最大值,由此得到.【小问1详解】当时,;①当时,,在上单调递增;当时,,在上单调递减,在上单调递增;综上所述:的单调递增区间为,;单调递减区间为②由①知:在上单调递增,在上单调递减,在上单调递增,,;,,,,,,在上的值域为.【小问2详解】由题意得:①当,即时,,对称轴为;当,即时,在上单调递增,;当,即时,在上单调递增,在上单调递减,;②当,即时,若,;若,;当时,,对称轴,在上单调递增,;③当,即时在上单调递增,在上单调递减,在上单调递增,,若,即时,;若,即时,;综上所述:.18、(1)证明见解析;(2)或【解析】(1)先设,然后利用作差法比较与的大小即可判断,(2)当时,,然后结合分式不等式可求,再设,根据已知可求,然后再求解不等式【详解】解:(1)是定义在上偶函数,且当时,,设,则,所以,所以在上单调递增,(2)当时,,整理得,,解得或(舍,设,则,,整理得,,解得,(舍或,综上或故不等式的解集或19、(1)(2)【解析】(1)分在第1个过程中,1或2位质检员检验结果为合格两种情况讨论,根据相互独立事件及互斥事件的概率公式计算可得;(2)首先求出在第1个过程中,3位质检员检验结果均为不合格的概率,再求出产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,最后根据互斥事件的概率公式计算可得;【小问1详解】解:记事件A为“产品需要进行第2个过程”在第1个过程中,1位质检员检验结果为合格的概率,在第1个过程中,2位质检员检验结果为合格的概率,故【小问2详解】解:记事件B为“产品不可以出厂”在第1个过程中,3位质检员检验结果均为不合格概率,产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,故20、(1)见解析;(2)见解析.【解析】⑴根据函数奇偶性的定义判断并证明函数的奇偶性;⑵根据函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电工》高级练习题(含参考答案)
- 细节管理提升护理质量
- AI大模型赋能港口设施数字运维一体化智能解决方案
- 重症监护患者夜间睡眠
- 网络服务器配置与管理(微课版) 习题及答案
- 2025年全民科学素质竞赛网络知识竞赛试题库及答案(共150题)
- 销售策划目的试题及答案
- 河北省张家口市普通高中学业水平选择性模拟考试三模 英语试题(含答案)
- 2025年山东省泰安市东平县(五四学制)中考三模历史试题(含答案)
- 2025【合同范本】租赁合同解除协议模板
- 部编版二年级语文下册期末试卷及答案【新版】
- 浙教版八年级科学下册思维导图(全册)
- 2024年湖南省永州市祁阳县小升初数学试卷
- 2024年中国工程监理行业市场动态分析、发展方向及投资前景分析报告
- 2024年江苏省宿迁市中考英语试题(含答案逐题解析)
- 2024江西省高考生物真题卷及答案
- 探视权起诉书范文
- 《煤炭工业半地下储仓建筑结构设计标准》
- 2024年一带一路暨金砖国家技能发展与技术创新大赛(无人机装调与应用赛项)考试题库(含答案)
- 《医疗器械监督管理条例》知识竞赛考试题库300题(含答案)
- 国开(青海)2024年《刑法学#》形考任务1-4答案
评论
0/150
提交评论