非等原子高熵合金的强韧性:设计,加工,微观结构和机械性能_第1页
非等原子高熵合金的强韧性:设计,加工,微观结构和机械性能_第2页
非等原子高熵合金的强韧性:设计,加工,微观结构和机械性能_第3页
非等原子高熵合金的强韧性:设计,加工,微观结构和机械性能_第4页
非等原子高熵合金的强韧性:设计,加工,微观结构和机械性能_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

StrongandDuctileNon-equiatomicHigh-EntropyAlloys:

Design,Processing,Microstructure,andMechanicalPropertiesChangRuobinCONTENTS1.Briefintroductionofhighentropyalloy2.Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloys3.Processingofstrongandductilebulknon-equiatomichigh-entropyalloys4.Microstructureandmechanicalpropertiesofnon-equiatomichigh-entropyalloys5.SummaryandoutlookBriefintroductiontotheHistoryofEngineeringMaterialsConventionalalloydesignoverthepastcenturieshasbeenconstrainedbytheconceptofoneortwoprevalentbaseelements.Asabreakthroughofthisrestriction,theconceptofhigh-entropyalloys(HEAs)containingmultipleprincipalelementshasdrawngreatattentionoverthelast13yearsduetothenumerousopportunitiesforinvestigationsinthehugeunexploredcompositionalspaceofmulticom-ponentalloys.Murty,Yeh,Ranganathan,Butterworth-Heinemann,2014.Fig.1.BriefintroductiontotheHistoryofEngineeringMaterialsFig.2.(1)Highentropyeffect(2)Schematicdiagramshowingthecompositionalspaceofnon-equiatomichigh-entropyalloys(HEAs),whichissignificantlylargerthanthatofconventionalalloysorequiatomicHEAs.Themoreelementsare,thehighertheentropyvalue.AsillustratedschematicallyinFig.2,comparedwithconventionalalloyswithoneortwoprincipalelementsplusminoralloyingcomponents,aswellasequiatomicHEAswithequimolarratiosofallalloyelements,non-equiatomicHEAsgreatlyexpandthecompositionalspacethatcanbeprobed.Pradeep,etal.MSEA,648(2015)183-192.2.Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloysFig.3.DifferencesintheGibbsfreeenergiesof(metastable)equiatomic,binaryfccsolidsolutionsandtheirrespectivethermodynamicequilibriumstates.(a)ThebaseCoCrFeMnNialloyat1123and1273K;(b–e)changesduetothesubstitutionof(b)CrwithMoorV,(c)FewithV,(d)CowithTiand(e)NiwithCu.Thusasignificantrelaxationofthephasestabilitytrendsseeninbinarysystemsduetopossibleentropyincreasesresultingfromanincreaseinthenumberofalloyingelementsisnotobservedinhigher-ordersystems.Formationofsingle-phasesolidsolutionsinHEAsshowsweakdependenceonmaximizationoftheconfigurationalentropythroughequiatomicratiosofelements.F.Otto,etal.ActaMaterialia61(2013)2628–2638Fig.4.Theconfigurationalentropy(Sc)ofthenon-equiatomiccompositionalHEAs(FexMn62-xNi30Co6Cr2)asafunctionofx(atomicfractionofFe).ThehorizontaldashedlineistheScoftheHEAattheequiatomiccomposition(Fe20Mn20Ni20Co20Cr20).ScisinkB(Boltzmannconstant)peratom.Thermodynamicinvestigationsofnon-equiatomic

HEAsshowedthattheconfigurationalentropycurveofthesealloysisratherflat,indicatingthatawiderangeofcompositionsalongsidetheequiatomicconfigurationassumesimilarentropyvalues.Thenon-equiatomicHEAconceptprovidespossibilitiesfortheunificationofvariousstrengtheningandtougheningmechanisms,enablingsignificantimprovementofstrain-hardeningcapacityandstrength

ductilitycombinations.D.Ma,etal.ActaMater.98,288(2015).

Athighstrains(>10%truestrain),deformationtwinningisactivatedasanadditionalmechanism,causingatransitioninthestrainhardeningratesimilarasinsomeTWIPsteels.Itwasevenfoundthatmaximumentropyisnotthemostessentialparameterwhendesigningmulticomponentalloyswithsuperiorproperties.Inthiscontext,non-equiatomicHEAswithsingle-structurehaverecentlybeenproposedtoexploretheflexibilityofHEAdesignandovercomethelimitationsoftheoriginalHEAdesignconcept.SinglephaseFCCY.Deng,etal.ActaMaterialia94(2015)124–133Fig.5Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloys

Thelimitedhardeningmechanismsavailableinsingle-phaseHEAs,i.e.,primarilydislocationinteractionandsolid-solutionstrengthening,restricttheirstrain-hardeningcapacityaswellastheattainablestrength–ductilitycombination.However,thefactthathighductilityofstrongmetallicalloyscanbeobtainedwhendifferentdeformationmechanismsareactivatedsequentiallyduringongoingloading,suchastheadditionalactivationoftwinningandphasetransformationathigherdeformationsknownfromtwinning-inducedplasticity(TWIP)andTRIPsteels.TheTWIPandTRIPphenomenaaremainlydeterminedbythevalueofthestackingfaultenergy,i.e.,theenergycarriedbytheinterruptionofthenormalstackingsequence.TheintrinsicstackingfaultenergyγIofFCC-structuredalloyscanbeexpressedas:Fig.6.Freeenergydifferences(∆G)betweentheFCCandHCPstructuresoftypicalalloysystemsat300KderivedbythermodynamiccalculationsusingtheCalphadapproach(Thermo-Calc,databaseTCFE7):(a)quaternaryFe80-xMnxCo10Cr10(x=45at.%,40at.%,35at.%,and30at.%)and(b)quinaryCo20Cr20Fe40-yMn20Niy(y=20at.%,15at.%,10,5at.%,and0at.%).ThisindicatesthattheTRIP-DPeffectintroducedintotheformerquaternaryalloycanalsoberealizedinquinaryalloyswithhighermixingentropyvalue.FreeenergydifferencesbetweentheFCCandHCPstructuresoftwotypicalalloysystemsZHIMINGLI,DIERKRAABE,JOM,Vol.69,No.11,2017Whendesigningthecompositionofstrongandductilenon-equiatomicdual-ormultiphaseHEAs,itisalsoessentialtonotethatthemultipleprincipalelementsselectedshouldbedistributeduniformlyinthemicrostructure,oratleastpartitioninsuchawaythatallofthecoexistingphaseshaveahighsolid-solutioneffectandhighmixingentropy.Furthermore,minorinterstitialelementfractionscanalsobeintroducedintostrongandductilenon-equiatomicdual-ormultiphaseHEAstofurtherimprovetheirmechanicalproperties.Z.Li,etal.Sci.Rep.7,40704(2017).Thus-preparedinterstitialHEA(referredtoasiHEA)wasindeedcharacterizedbyacombinationofvariousstrengtheningmechanismsFig.73.Processingofstrongandductilebulknon-equiatomichigh-entropyalloysFig.8.Processingroutesandrelatedparametersaswellasresultantcompositionalhomogeneitystatesfor3dtransition-metalhigh-entropyalloys.Processingofstrongandductilebulknon-equiatomichigh-entropyalloysThedistributionofthemulti-maincomponentintheblockHEAsisnotuniformbythehomogenizationtreatment.SincehomogenizedHEAsheetsexhibithugegrainsize(>30lm),cold-rollingandannealingprocessesaregenerallyrequiredtorefinethegrainstoachievebettermechanicalproperties.Annealingwasconductedtoobtainfullrecrystallizationofthemicrostructureandtocontrolthegrainsizes.Fig.9.VariationsinFCCgrainsizeandHCPphasefractionindual-phaseFe50Mn30Co10Cr10alloywithincreasingannealingtimeat900°C.Annealingtimeof0minreferstothecold-rolledstateofthesampleswithoutannealing.Interestingly,forthedesignedTRIP-assisteddual-phaseHEAs,annealingtreatmentscanbeusednotonlytocontrolthegrainsize,butalsotomodifythephasefractionsinthemicrostructure.ThevariationsintheFCCgrainsizeandHCPphasefractionofthequaternarydual-phaseZ.Li,etal.ActaMater.131,323(2017).4.Microstructureandmechanicalpropertiesofnon-equiatomichigh-entropyalloysFig.10.TypicalmicrostructuresofFe50Mn30Co10Cr10andFe49.5Mn30Co10Cr10C0.5alloysafterrecrystallizationannealingfor3min:(a1)EBSDphasemapand(a2)ECCimageofdual-phaseFe50Mn30Co10Cr10alloy;(b1)EBSDphasemap,(b2)ECCimage,(b3)APTtipreconstruction,(b4)elementalprofilesacrossaninterfaceofmatrixandcarbide,(b5)TEMbright-fieldimage,and(b6)selected-areadiffractionpatternofinterstitialFe49.5Mn30Co10Cr10C0.5alloy.Diffractionspotsmarkedbyredcirclesin(b6)showtheFCCstructureoftheM23C6carbides(Colorfigureonline).TheslightincreaseofstackingfaultenergyandcorrespondinglyhigherFCCphasestabilitywithadditionofC.ThefractionofHCPephaseintheiHEAissignificantlyreducedafterannealing(Fig.10b1)comparedwiththereferencealloywithoutC(Fig.10a1).Z.Li,etal.ActaMater.131,323(2017).Fig.11.Overviewofultimatetensilestrengthandtotalengineeringelongationobtainedforvariousnon-equiatomichigh-entropyalloys.Forcomparison,dataoftheequiatomicCo20Cr20Fe20Mn20Ni20alloy(#2)arealsoshown.Allalloysproducedin-houseusingsimilarprocessingroutesshowninFig.6forfullcontroloftheexperimentalsetup.Allthesedatastemfromuniaxialtensiletestsconductedonbulksampleswithidenticaldimensionsatroomtemperatureatstrainrateof1x10-3s-1.Withadditionofinterstitialelementcarbonintothedual-phasemicrostructure,thegrain-refinedFe49.5Mn30Co10Cr10C0.5alloy(#8)showsfurtherincreasedultimatestrengthuptonearly1GPawithtotalelongationof~60%.Thesesuperiormechanicalpropertiesareattributedtothejointactivityofvariousstrengtheningmechanismsincludinginter-stitialandsubstitutionalsolidsolution,TWIP,TRIP,nanoprecipitates,dislocationinteractions,stackingfaults,andgrainboundaries.Fig.12.Overviewofdeformationmechanismsinvariousmulticomponenthigh-entropyalloysshowingthattuningdeformationmechanismsiskeytodevelopmentofstrongandductilenon-equiatomichigh-entropyalloys(NE-HEAs).ThestrengthandductilityofthesealloysaregiveninFig.11.SS:solidsolution.Tofurtherclarifythemechanismsresponsiblefortheabovemicrostructure–propertyrelations,Fig.12providesanoverviewofthevariousdeformationmechanismsindifferentmulticomponentHEAspresentedinFig.11.Thisclearlyshowsthattuningdeformationmechanismsviacompositionadjustmentiskeytothedesignofstrongandductilenon-equiatomicHEAs.5.SummaryandoutlookThestrengthandductilityofthevariousnon-equiatomicHEAsatlowandelevatedtemperaturesarestillunknown,andnew(non-equiatomic)HEAswithexcellentstrength–ductilitycombinationsatlowandelevatedtemperaturescanbedesignedandstudied.Forthewidelystudiedtransitio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论