2023学年江苏省南京梅山高级中学高考压轴卷数学试卷(含答案解析)_第1页
2023学年江苏省南京梅山高级中学高考压轴卷数学试卷(含答案解析)_第2页
2023学年江苏省南京梅山高级中学高考压轴卷数学试卷(含答案解析)_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数是正实数,则实数的值为()A. B. C. D.2.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A. B. C. D.3.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.4.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.5.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A. B. C.2 D.6.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.7.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.8.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.19.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行10.已知向量,满足||=1,||=2,且与的夹角为120°,则=()A. B. C. D.11.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:黄赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年12.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则的最小值为______.14.的展开式中项的系数为_______.15.设函数,若存在实数m,使得关于x的方程有4个不相等的实根,且这4个根的平方和存在最小值,则实数a的取值范围是______.16.已知等比数列{an}的前n项和为Sn,若a2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.18.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.19.(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.20.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.21.(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.22.(10分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】

将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【题目详解】因为为正实数,所以且,解得.故选:C【答案点睛】本题考查复数的基本定义,属基础题.2.C【答案解析】

求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【题目详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【答案点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.3.A【答案解析】

由,可得以及,而,代入即可得到答案.【题目详解】设公差为d,则解得,所以.故选:A.【答案点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.4.B【答案解析】

利用等差数列性质,若,则求出,再利用等差数列前项和公式得【题目详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【答案点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.5.C【答案解析】

由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【答案点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.6.D【答案解析】

利用复数代数形式的乘除运算化简,再由实部为求得值.【题目详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【答案点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.7.A【答案解析】

结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【题目详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【答案点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.8.B【答案解析】

过点的直线与圆:相切于点,可得.因此,即可得出.【题目详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【答案点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.9.B【答案解析】

根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【题目详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【答案点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.10.D【答案解析】

先计算,然后将进行平方,,可得结果.【题目详解】由题意可得:∴∴则.故选:D.【答案点睛】本题考查的是向量的数量积的运算和模的计算,属基础题。11.D【答案解析】

先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项.【题目详解】解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为,则即为冬至日光与春秋分日光的夹角,即黄赤交角,将图3近似画出如下平面几何图形:则,,.,估计该骨笛的大致年代早于公元前6000年.故选:.【答案点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.12.B【答案解析】

双曲线的渐近线方程为,由题可知.设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B.二、填空题:本题共4小题,每小题5分,共20分。13.2【答案解析】

作出可行域,平移基准直线到处,求得的最小值.【题目详解】画出可行域如下图所示,由图可知平移基准直线到处时,取得最小值为.故答案为:【答案点睛】本小题主要考查线性规划求最值,考查数形结合的数学思想方法,属于基础题.14.40【答案解析】

根据二项定理展开式,求得r的值,进而求得系数.【题目详解】根据二项定理展开式的通项式得所以,解得所以系数【答案点睛】本题考查了二项式定理的简单应用,属于基础题.15.【答案解析】

先确定关于x的方程当a为何值时有4个不相等的实根,再将这四个根的平方和表示出来,利用函数思想来判断当a为何值时这4个根的平方和存在最小值即可.【题目详解】由题意,当时,,此时,此时函数在单调递减,在单调递增,方程最多2个不相等的实根,舍;当时,函数图象如下所示:从左到右方程,有4个不相等的实根,依次为,,,,即,由图可知,故,且,,从而,令,显然,,要使该式在时有最小值,则对称轴,解得.综上所述,实数a的取值范围是.【答案点睛】本题考查了函数和方程的知识,但需要一定的逻辑思维能力,属于较难题.16.-2【答案解析】试题分析:∵a2考点:等比数列性质及求和公式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)见解析.【答案解析】

(1)令,,利用可求得数列的通项公式,由此可得出数列的通项公式;(2)求得,利用裂项相消法求得,进而可得出结论.【题目详解】(1)令,,当时,;当时,,则,故;(2),.【答案点睛】本题考查利用求通项,同时也考查了裂项相消法求和,考查计算能力与推理能力,属于基础题.18.(1);(2)见解析.【答案解析】

(1)利用独立事件的概率乘法公式可计算出所求事件的概率;(2)由题意可知随机变量的可能取值有、、,计算出随机变量在不同取值下的概率,由此可得出随机变量的分布列.【题目详解】(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件,则;(2)由题意可知,随机变量的可能取值为、、.则,,.故的分布列为【答案点睛】本题考查概率的计算,同时也考查了随机变量分布列,考查计算能力,属于基础题.19.(1)1;(2)证明见解析.【答案解析】

(1)利用零点分段法将表示为分段函数的形式,由此求得的最大值,进而求得的值.(2)利用(1)的结论,将转化为,求得的取值范围,利用换元法,结合函数的单调性,证得,由此证得不等式成立.【题目详解】(1)当时,取得最大值.(2)证明:由(1)得,,,当且仅当时等号成立,令,则在上单调递减当时,.【答案点睛】本小题主要考查含有绝对值的函数的最值的求法,考查利用基本不等式进行证明,属于中档题.20.(1)(2)证明见解析【答案解析】

(1)由已知可得,构造等比数列即可求出通项公式;(2)当时,由,可求,时,由,可证,验证时,不等式也成立,即可得证.【题目详解】(1)由可得,,即,所以,解得,(2)当时,,,当时,,综上,由可得递增,,时;所以,综上:故.【答案点睛】本题主要考查了递推数列求通项公式,利用放缩法证明不等式,涉及等比数列的求和公式,属于难题.21.(1)(2)最大值为【答案解析】

(1)利用消去参数,求得曲线的普通方程,再转化为极坐标方程.(2)设出两点的坐标,求得的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得的最大值.【题目详解】(1)由消去得曲线的普通方程为.所以的极坐标方程为,即.(2)不妨设,,,,,则当时,取得最大值,最大值为.【答案点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程,考查极坐标系下线段长度的乘积的最值的求法,考查三角恒等变换,考查三角函数最值的求法,属于中档题.22.(1)函数的单调递增区间为和,单调递减区间为;(2).【答案解析】

(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【题目详解】(1),①当时,,∴函数在内单调递增;②当时,令,解得或,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论