版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整理为word格式整理为word格式整理为word格式【考点训练】三角形的形状判断-2(扫描二维码可查看试题解析)一、选择题(共20小题)1.(2014•静安区校级模拟)若,则△ABC为()A.等腰三角形B.直角三角形C.锐角三角形D.不能判断2.(2014秋•郑州期末)若△ABC的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形3.(2014秋•祁县校级期末)A为三角形ABC的一个内角,若sinA+cosA=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形4.(2014•天津学业考试)在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.(2014春•禅城区期末)已知:在△ABC中,,则此三角形为()A.直角三角形B.等腰直角三角形C.等腰三角形D.等腰或直角三角形整理为word格式整理为word格式整理为word格式6.(2014•南康市校级模拟)已知△ABC满足,则△ABC是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形7.(2014•马鞍山二模)已知非零向量与满足且=.则△ABC为()A.等边三角形B.直角三角形C.等腰非等边三角形D.三边均不相等的三角形8.(2014•蓟县校级二模)在△ABC中,a,b,c分别是角A,B,C所对的边,且2c2=2a2+2b2+ab,则△ABC是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形9.(2014•黄冈模拟)已知在△ABC中,向量与满足(+)•=0,且•=,则△ABC为()A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形10.(2014•奉贤区二模)三角形ABC中,设=,=,若•(+)<0,则三角形ABC的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定11.(2015•温江区校级模拟)已知向量,则△ABC的形状为()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形整理为word格式整理为word格式整理为word格式12.(2014秋•景洪市校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且,则△ABC的形状为()A.等边三角形B.等腰直角三角形C.等腰或直角三角形D.直角三角形13.(2014•咸阳三模)△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形14.(2014•奎文区校级模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若,则△ABC的形状是()A.等边三角形B.钝角三角形C.直角三角形D.等腰三角形但不是等边三角形15.(2014秋•正定县校级期末)在△ABC中,tanA•sin2B=tanB•sin2A,那么△ABC一定是()A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形16.(2014•漳州四模)在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA则△ABC的形状为()A.直角三角形B.锐角三角形C.等边三角形D.等腰直角三角形17.(2014•云南模拟)在△ABC中,若tanAtanB>1,则△ABC是()整理为word格式整理为word格式整理为word格式A.锐角三角形B.直角三角形C.钝角三角形D.无法确定18.(2013秋•金台区校级期末)双曲线=1和椭圆=1(a>0,m>b>0)的离心率互为倒数,那么以a,b,m为边长的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形19.(2014•红桥区二模)在△ABC中,“”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件20.(2014秋•德州期末)在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形二、填空题(共10小题)(除非特别说明,请填准确值)21.(2014春•沭阳县期中)在△ABC中,已知sinA=2sinBcosc,则△ABC的形状为.22.(2014秋•思明区校级期中)在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.23.(2013•文峰区校级一模)已知△ABC中,AB=,BC=1,tanC=,则AC等于.24.(2013春•广陵区校级期中)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是三角形.25.(2014秋•潞西市校级期末)在△ABC中,已知c=2acosB,则△ABC的形状为.整理为word格式整理为word格式整理为word格式26.(2014春•常熟市校级期中)在△ABC中,若,则△ABC的形状是.27.(2014春•石家庄期末)在△ABC中,若sin2A+sin2B<sin2C,则该△ABC是三角形(请你确定其是锐角三角形、直角三角形还是钝角三角形).28.(2013春•遵义期中)△ABC中,b=a,B=2A,则△ABC为三角形.29.(2013秋•沧浪区校级期末)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC为(填锐角三角形、直角三角形、钝角三角形.)30.(2014春•宜昌期中)在△ABC中,sinA=2cosBsinC,则三角形为三角形.整理为word格式整理为word格式整理为word格式【考点训练】三角形的形状判断-2参考答案与试题解析一、选择题(共20小题)1.(2014•静安区校级模拟)若,则△ABC为()A.等腰三角形B.直角三角形C.锐角三角形D.不能判断考点:三角形的形状判断.专题:计算题.分析:利用平方差公式,由,推出AB=AC,即可得出△ABC为等腰三角形.解答:解:由,得:,∴故AB=AC,△ABC为等腰三角形,故选A.点评:本小题主要考查向量的数量积、向量的模、向量在几何中的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.整理为word格式整理为word格式整理为word格式2.(2014秋•郑州期末)若△ABC的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形考点:三角形的形状判断.专题:计算题;解三角形.分析:根据题意,结合正弦定理可得a:b:c=4:6:8,再由余弦定理算出最大角C的余弦等于﹣,从而得到△ABC是钝角三角形,得到本题答案.解答:解:∵角A、B、C满足6sinA=4sinB=3sinC,∴根据正弦定理,得6a=4b=3c,整理得a:b:c=4:6:8设a=4x,b=6x,c=8x,由余弦定理得:cosC=整理为word格式整理为word格式整理为word格式==﹣∵C是三角形内角,得C∈(0,π),∴由cosC=﹣<0,得C为钝角因此,△ABC是钝角三角形故选:C点评:本题给出三角形个角正弦的比值,判断三角形的形状,着重考查了利用正、余弦定理解三角形的知识,属于基础题.3.(2014秋•祁县校级期末)A为三角形ABC的一个内角,若sinA+cosA=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形考点:三角形的形状判断.专题:计算题;解三角形.分析:将已知式平方并利用sin2A+cos2A=1,算出sinAcosA=﹣整理为word格式整理为word格式整理为word格式<0,结合A∈(0,π)得到A为钝角,由此可得△ABC是钝角三角形.解答:解:∵sinA+cosA=,∴两边平方得(sinA+cosA)2=,即sin2A+2sinAcosA+cos2A=,∵sin2A+cos2A=1,∴1+2sinAcosA=,解得sinAcosA=(﹣1)=﹣<0,∵A∈(0,π)且sinAcosA<0,∴A∈(,π),可得△ABC是钝角三角形故选:B点评:本题给出三角形的内角A的正弦、余弦的和,判断三角形的形状.着重考查了同角三角函数的基本关系、三角形的形状判断等知识,属于基础题.4.(2014•天津学业考试)在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形考点:三角形的形状判断;两角和与差的余弦函数.专题:计算题.分析:对不等式变形,利用两角和的余弦函数,求出A+B的范围,即可判断三角形的形状.解答:解:因为在△ABC中,sinA•sinB<cosA•cosB,所以cos(A+B)>0,所以A+B∈(0,),C>,所以三角形是钝角三角形.故选B.点评:本题考查三角形的形状的判定,两角和的余弦函数的应用,注意角的范围是解题的关键.整理为word格式整理为word格式整理为word格式5.(2014春•禅城区期末)已知:在△ABC中,,则此三角形为()A.直角三角形B.等腰直角三角形C.等腰三角形D.等腰或直角三角形考点:三角形的形状判断.专题:计算题.分析:由条件可得sinCcosB=cosCsinB,故sin(C﹣B)=0,再由﹣π<C﹣B<π,可得C﹣B=0,从而得到此三角形为等腰三角形.解答:解:在△ABC中,,则ccosB=bcosC,由正弦定理可得sinCcosB=cosCsinB,∴sin(C﹣B)=0,又﹣π<C﹣B<π,∴C﹣B=0,故此三角形为等腰三角形,故选C.点评:本题考查正弦定理,两角差的正弦公式,得到sin(C﹣B)=0及﹣π<C﹣B<π,是解题的关键.整理为word格式整理为word格式整理为word格式6.(2014•南康市校级模拟)已知△ABC满足,则△ABC是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形的形状判断.专题:计算题;平面向量及应用.分析:根据向量的加减运算法则,将已知化简得=+•,得•=0.结合向量数量积的运算性质,可得CA⊥CB,得△ABC是直角三角形.解答:解:∵△ABC中,,∴=(﹣)+•=•+•即=+•,得•=0整理为word格式整理为word格式整理为word格式∴⊥即CA⊥CB,可得△ABC是直角三角形故选:C点评:本题给出三角形ABC中的向量等式,判断三角形的形状,着重考查了向量的加减法则、数量积的定义与运算性质等知识,属于基础题.7.(2014•马鞍山二模)已知非零向量与满足且=.则△ABC为()A.等边三角形B.直角三角形C.等腰非等边三角形D.三边均不相等的三角形考点:三角形的形状判断.专题:计算题.分析:通过向量的数量积为0,判断三角形是等腰三角形,通过=求出等腰三角形的顶角,然后判断三角形的形状.解答:解:因为整理为word格式整理为word格式整理为word格式,所以∠BAC的平分线与BC垂直,三角形是等腰三角形.又因为,所以∠BAC=60°,所以三角形是正三角形.故选A.点评:本题考查向量的数量积的应用,考查三角形的判断,注意单位向量的应用,考查计算能力.8.(2014•蓟县校级二模)在△ABC中,a,b,c分别是角A,B,C所对的边,且2c2=2a2+2b2+ab,则△ABC是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形考点:三角形的形状判断.专题:计算题.分析:整理题设等式,代入余弦定理中求得cosC的值,小于0判断出C为钝角,进而可推断出三角形为钝角三角形.解答:解:∵2c2=2a2+2b2+ab,∴a2+b2﹣c2=﹣整理为word格式整理为word格式整理为word格式ab,∴cosC==﹣<0.则△ABC是钝角三角形.故选A点评:本题主要考查了三角形形状的判断,余弦定理的应用.一般是通过已知条件,通过求角的正弦值或余弦值求得问题的答案.9.(2014•黄冈模拟)已知在△ABC中,向量与满足(+)•=0,且•=,则△ABC为()A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形考点:三角形的形状判断.专题:计算题.分析:设,由=0,可得AD⊥BC,再根据边形AEDF是菱形推出∠EAD=∠DAC,整理为word格式整理为word格式整理为word格式再由第二个条件可得∠BAC=60°,由△ABH≌△AHC,得到AB=AC,得到△ABC是等边三角形.解答:解:设,则原式化为=0,即=0,∴AD⊥BC.∵四边形AEDF是菱形,|•=||•||•cos∠BAC=,∴cos∠BAC=,∴∠BAC=60°,∴∠BAD=∠DAC=30°,∴△ABH≌△AHC,∴AB=AC.∴△ABC是等边三角形.整理为word格式整理为word格式整理为word格式点评:本题考查两个向量的加减法的法则,以及其几何意义,三角形形状的判断,属于中档题.10.(2014•奉贤区二模)三角形ABC中,设=,=,若•(+)<0,则三角形ABC的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定考点:三角形的形状判断.专题:计算题;解三角形.分析:依题意,可知+=;利用向量的数量积即可判断三角形ABC的形状.解答:解:∵=,=,∴+=+=;∵•(+)<0,∴•<0,整理为word格式整理为word格式整理为word格式即||•||•cos∠BAC<0,∵||•||>0,∴cos∠BAC<0,即∠BAC>90°.∴三角形ABC为钝角三角形.故选B.点评:本题考查三角形的形状判断,+=的应用是关键,考查转化思想与运算能力,属于中档题.11.(2015•温江区校级模拟)已知向量,则△ABC的形状为()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形考点:三角形的形状判断;数量积表示两个向量的夹角.专题:平面向量及应用.分析:由数量积的坐标运算可得>0,而向量的夹角=π﹣B,进而可得B为钝角,可得答案.整理为word格式整理为word格式整理为word格式解答:解:由题意可得:=(cos120°,sin120°)•(cos30°,sin45°)=(,)•(,)==>0,又向量的夹角=π﹣B,故cos(π﹣B)>0,即cosB<0,故B为钝角,故△ABC为钝角三角形故选D点评:本题为三角形性质的判断,由向量的数量积说明角的范围是解决问题的关键,属中档题.12.(2014秋•景洪市校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且,则△ABC的形状为()A.等边三角形B.等腰直角三角形C.等腰或直角三角形D.直角三角形整理为word格式整理为word格式整理为word格式考点:三角形的形状判断.专题:计算题.分析:利用二倍角的余弦函数公式化简已知等式的左边,整理后表示出cosA,再利用余弦定理表示出cosA,两者相等,整理后得到a2+b2=c2,根据勾股定理的逆定理即可判断出此三角形为直角三角形.解答:解:∵cos2=,∴=,∴cosA=,又根据余弦定理得:cosA=,∴=,∴b2+c2﹣a2=2b2,即a2+b2=c2,整理为word格式整理为word格式整理为word格式∴△ABC为直角三角形.故选D.点评:此题考查了三角形形状的判断,考查二倍角的余弦函数公式,余弦定理,以及勾股定理的逆定理;熟练掌握公式及定理是解本题的关键.13.(2014•咸阳三模)△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形考点:三角形的形状判断.专题:计算题;解三角形.分析:由,结合等腰三角形三线合一的性质,我们易判断△ABC为等腰三角形,又由△ABC的三个内角A、B、C成等差数列,我们易求出B=60°,综合两个结论,即可得到答案.解答:解:∵△ABC的三个内角A、B、C成等差数列,整理为word格式整理为word格式整理为word格式∴2B=A+C.又∵A+B+C=180°,∴B=60°.设D为AC边上的中点,则+=2.又∵,∴.∴即△ABC为等腰三角形,AB=BC,又∵B=60°,故△ABC为等边三角形.故选:B.点评:本题考查的知识点是平面向量的数量积运算和等差数列的性质,其中根据平面向量的数量积运算,判断△ABC为等腰三角形是解答本题的关键.14.(2014•奎文区校级模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若,则△ABC的形状是()A.等边三角形B.钝角三角形C.直角三角形D.等腰三角形但不是等边三角形整理为word格式整理为word格式整理为word格式考点:三角形的形状判断.专题:计算题;解三角形.分析:将c+a+b=转化为以与为基底的关系,即可得到答案.解答:解:∵=﹣,=﹣,∴c+a+b=c﹣a+b(﹣)=即c+b﹣(a+b)=,∵P是BC边中点,∴=(+),∴c+b﹣(a+b)(+)=,∴c﹣(a+b)=0且b﹣(a+b)=0,整理为word格式整理为word格式整理为word格式∴a=b=c.故选A.点评:本题考查三角形的形状判断,突出考查向量的运算,考查化归思想与分析能力,属于中档题.15.(2014秋•正定县校级期末)在△ABC中,tanA•sin2B=tanB•sin2A,那么△ABC一定是()A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形考点:三角形的形状判断.专题:综合题.分析:把原式利用同角三角函数间的基本关系变形后,得到sin2A=sin2B,由A和B为三角形的内角,得到2A与2B相等或互补,从而得到A与B相等或互余,即三角形为等腰三角形或直角三角形.解答:解:原式tanA•sin2B=tanB•sin2A,变形为:=,化简得:sinBcosB=sinAcosA,即整理为word格式整理为word格式整理为word格式sin2B=sin2A,即sin2A=sin2B,∵A和B都为三角形的内角,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰三角形或直角三角形.故选D.点评:此题考查了三角形形状的判断,熟练掌握三角函数的恒等变换把原式化为sin2A=sin2B是解本题的关键.16.(2014•漳州四模)在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA则△ABC的形状为()A.直角三角形B.锐角三角形C.等边三角形D.等腰直角三角形考点:三角形的形状判断.专题:计算题.分析:通过两个等式推出b=c,然后求出A的大小,即可判断三角形的形状.解答:解:因为在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA整理为word格式整理为word格式整理为word格式所以,所以b=c,2bcosA=c,所以cosA=,A=60°,所以三角形是正三角形.故选C.点评:本题考查三角形的形状的判断,三角函数值的求法,考查计算能力.17.(2014•云南模拟)在△ABC中,若tanAtanB>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定考点:三角形的形状判断.专题:综合题.分析:利用两角和的正切函数公式表示出tan(A+B),根据A与B的范围以及tanAtanB>1,得到tanA和tanB都大于0,即可得到A与B都为锐角,然后判断出tan(A+B)小于0,得到A+B为钝角即C为锐角,所以得到此三角形为锐角三角形.整理为word格式整理为word格式整理为word格式解答:解:因为A和B都为三角形中的内角,由tanAtanB>1,得到1﹣tanAtanB<0,且得到tanA>0,tanB>0,即A,B为锐角,所以tan(A+B)=<0,则A+B∈(,π),即C都为锐角,所以△ABC是锐角三角形.故答案为:锐角三角形点评:此题考查了三角形的形状判断,用的知识有两角和与差的正切函数公式.解本题的思路是:根据tanAtanB>1和A与B都为三角形的内角得到tanA和tanB都大于0,即A和B都为锐角,进而根据两角和与差的正切函数公式得到tan(A+B)的值为负数,进而得到A+B的范围,判断出C也为锐角.18.(2013秋•金台区校级期末)双曲线=1和椭圆=1(a>0,m>b>0)的离心率互为倒数,那么以a,b,m为边长的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形考点:三角形的形状判断;椭圆的简单性质;双曲线的简单性质.专题:计算题.分析:求出椭圆与双曲线的离心率,利用离心率互为倒数,推出a,b,m的关系,判断三角形的形状.解答:解:双曲线=1和椭圆=1(a>0,m>b>0)的离心率互为倒数,所以,所以b2m2﹣a2b2﹣b4=0即m整理为word格式整理为word格式整理为word格式2=a2+b2,所以以a,b,m为边长的三角形是直角三角形.故选C.点评:本题是中档题,考查椭圆与双曲线基本性质的应用,三角形形状的判断方法,考查计算能力.19.(2014•红桥区二模)在△ABC中,“”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:三角形的形状判断.专题:计算题.分析:利用平面向量的数量积运算法则化简已知的不等式,得到两向量的夹角为锐角,从而得到三角形的内角为钝角,即可得到三角形为钝角三角形;反过来,三角形ABC若为钝角三角形,可得B不一定为钝角,故原不等式不一定成立,可得前者是后者的充分不必要条件.整理为word格式整理为word格式整理为word格式解答:解:∵,即||•||cosθ>0,∴cosθ>0,且θ∈(0,π),所以两个向量的夹角θ为锐角,又两个向量的夹角θ为三角形的内角B的补角,所以B为钝角,所以△ABC为钝角三角形,反过来,△ABC为钝角三角形,不一定B为钝角,则“”是“△ABC为钝角三角形”的充分条件不必要条件.故选A点评:此题考查了三角形形状的判断,涉及的知识有平面向量的数量积运算,以及充分必要条件的证明,熟练掌握平面向量的数量积运算法则是解本题的关键.20.(2014秋•德州期末)在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形考点:三角形的形状判断.专题:计算题.分析:利用正弦定理化简已知的等式,再根据二倍角的正弦函数公式变形后,得到sin2A=sin2B,由A和B都为三角形的内角,可得A=B或A+B=90°,从而得到三角形ABC为等腰三角形或直角三角形.解答:解:由正弦定理asinA=bsinB化简已知的等式得:sinAcosA=sinBcosB,∴sin2A=sin2B,∴sin2A=sin2B,又A和B都为三角形的内角,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰或直角三角形.整理为word格式整理为word格式整理为word格式故选D点评:此题考查了三角形形状的判断,涉及的知识有正弦定理,二倍角的正弦函数公式,以及正弦函数的图象与性质,其中正弦定理很好得解决了三角形的边角关系,利用正弦定理化简已知的等式是本题的突破点.二、填空题(共10小题)(除非特别说明,请填准确值)21.(2014春•沭阳县期中)在△ABC中,已知sinA=2sinBcosc,则△ABC的形状为等腰三角形.考点:三角形的形状判断.专题:计算题.分析:通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.解答:解:因为sinA=2sinBcosc,所以sin(B+C)=2sinBcosC,所以sinBcosC﹣sinCcosB=0,即sin(B﹣C)=0,整理为word格式整理为word格式整理为word格式因为A,B,C是三角形内角,所以B=C.三角形的等腰三角形.故答案为:等腰三角形.点评:本题考查两角和的正弦函数的应用,三角形的判断,考查计算能力.22.(2014秋•思明区校级期中)在△ABC中,若a=9,b=10,c=12,则△ABC的形状是锐角三角形.考点:三角形的形状判断.专题:计算题;解三角形.分析:因为c是最大边,所以C是最大角.根据余弦定理算出cosC是正数,得到角C是锐角,所以其它两角均为锐角,由此得到此三角形为锐角三角形.解答:解:∵c=12是最大边,∴角C是最大角根据余弦定理,得cosC==>0∵C∈(0,π),∴角C是锐角,整理为word格式整理为word格式整理为word格式由此可得A、B也是锐角,所以△ABC是锐角三角形故答案为:锐角三角形点评:本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.23.(2013•文峰区校级一模)已知△ABC中,AB=,BC=1,tanC=,则AC等于2.考点:三角形的形状判断.专题:解三角形.分析:画出图形,利用已知条件直接求出AC的距离即可.解答:解:由题意AB=,BC=1,tanC=,可知C=60°,B=90°,三角形ABC是直角三角形,所以AC==2.故答案为:2.整理为word格式整理为word格式整理为word格式点评:本题考查三角形形状的判断,勾股定理的应用,考查计算能力.24.(2013春•广陵区校级期中)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是等腰三角形.考点:三角形的形状判断.专题:计算题.分析:等式即2cosBsinA=sin(A+B),展开化简可得sin(A﹣B)=0,由﹣π<A﹣B<π,得A﹣B=0,故三角形ABC是等腰三角形.解答:解:在△ABC中,若2cosBsinA=sinC,即2cosBsinA=sin(A+B)=sinAcosB+cosAsinB,∴sinAcosB﹣cosAsinB=0,即sin(A﹣B)=0,∵﹣π<A﹣B<π,∴A﹣B=0,整理为word格式整理为word格式整理为word格式故△ABC为等腰三角形,故答案为:等腰.点评:本题考查两角和正弦公式,诱导公式,根据三角函数的值求角,得到sin(A﹣B)=0,是解题的关键.25.(2014秋•潞西市校级期末)在△ABC中,已知c=2acosB,则△ABC的形状为等腰三角形.考点:三角形的形状判断.专题:计算题.分析:由正弦定理可得sin(A+B)=2sinAcosB,由两角和的正弦公式可求得sin(A﹣B)=0,根据﹣π<A﹣B<π,故A﹣B=0,从而得到△ABC的形状为等腰三角形.解答:解:由正弦定理可得sin(A+B)=2sinAcosB,由两角和的正弦公式可得sinAcosB+cosAsinB=2sinAcosB,∴sin(A﹣B)=0,又﹣π<A﹣B<π,∴A﹣B=0,故△ABC的形状为等腰三角形,整理为word格式整理为word格式整理为word格式故答案为等腰三角形.点评:本题考查正弦定理的应用,已知三角函数值求角的大小,得到sin(A﹣B)=0,是解题的关键.26.(2014春•常熟市校级期中)在△ABC中,若,则△ABC的形状是等腰或直角三角形.考点:三角形的形状判断.专题:计算题;解三角形.分析:在△ABC中,利用正弦定理将中等号右端的边化为其所对角的正弦,再由二倍角公式即可求得答案.解答:解:在△ABC中,由正弦定理得:=,∴=,整理为word格式整理为word格式整理为word格式∴⇔=,∴sin2A=sin2B,又A,B为三角形的内角,∴2A=2B或2A+2B=π,∴A=B或A+B=.∴△ABC为等腰三角形或直角三角形.故答案为:等腰或直角三角形.点评:本题考查三角形的形状判断,着重考查正弦定理与二倍角公式的应用,属于中档题.27.(2014春•石家庄期末)在△ABC中,若sin2A+sin2B<sin2C,则该△ABC是钝角三角形(请你确定其是锐角三角形、直角三角形还是钝角三角形).考点:三角形的形状判断.专题:解三角形.分析:由正弦定理可得a2+b2<c2,则再由余弦定理可得cosC<0,故C为钝角,从而得出结论.解答:解:在△ABC中,若sin整理为word格式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班小雪节气国旗下讲话稿范文(9篇)
- 开学典礼致辞(15篇)
- 初级会计经济法基础-初级会计《经济法基础》模拟试卷335
- RRD硅油填充术后继发高眼压的眼前节相关影响因素分析及中医体质类型研究
- 建筑与市政工程质量安全巡查的第三方解决方案
- 【医学课件】加强防范医疗事故(83p)
- 2025版食堂食材采购合同及食品安全培训服务协议3篇
- 养鱼店销售员工作总结
- 酒店厨房管理规范制定
- 2025版行政上诉状补充范文:权威解读与实战演练3篇
- 销售礼盒营销方案
- 南浔至临安公路(南浔至练市段)公路工程环境影响报告
- 《小英雄雨来》读书分享会
- 初中数学校本教材(完整版)
- 重庆市铜梁区2024届数学八上期末检测试题含解析
- 中央导管相关血流感染防控
- 光的偏振和晶体光学基础课件
- 中科大光学讲义08光的偏振
- 黑布林英语阅读《小妇人》-中英伴读
- 小学美术-《神奇的肥皂粉》教学设计学情分析教材分析课后反思
- WINCC满足FDA规范配置说明分解
评论
0/150
提交评论