版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数形结合思想例题分析数形结合思想例题分析数形结合思想例题分析数形结合思想例题分析编制仅供参考审核批准生效日期地址:电话:传真:邮编:数形结合思想例题分析一、构造几何图形解决代数与三角问题:1、证明恒等式:例1已知、、、均为正数,且求证:分析:由自然联想到勾股定理。由可以联想到射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种算法,结论的正确性一目了然。证明:(略)小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。2、证明不等式:例2已知:0<<1,0<<1.求证证明:如图,作边长为1的正方形ABCD,在AB上取点E,使AE=;在AD上取点G,使AG=,过E、G分别作EF由题设及作图知△、△、△、△均为直角三角形,因此且由于所以:当且仅当时,等号成立。小结:在求证条件不等式时,可根据题设条件作出对应的图形,然后运用图形的几何性质或者平面几何的定理、公理去建立不等式使结论获证。3、求参数的值或参数的取值范围:例3若方程(>0)的两根满足:<1,1<<3,求的取值范围。解析:画出与方程对应的二次函数(>0)的草图:由图可知:当=1时,<0;当=3时,>0.即<0;>0.解得:<<1.例4若关于的不等式的解集仅有一个元素,求的值。解:如图:在同一坐标系内,作出与的图象。题设条件等价于抛物线在直线与之间的带状区域仅有一个交点,且抛物线开口向上。由图形的直观性质可知:这个交点只能在直线上,故方程组仅有一组解。即小结:对于含参方程(不等式),可将其与对应的函数(图象)联系起来,运用数形结合思想,去揭示问题中所蕴含的几何背景,往往能为解题提供清晰的思路。4、求最值问题:例5已知、均为正数,且求的最小值。解:如图,作线段AB=2,在AB上截取AE=,EB=,过A作ACAB,且AC=2,过B作BDAB,且BD=1。由勾股定理:CE=,BD=,原题即求CE+ED的最小值。又如图,延长CA至G,使AG=AC,连接GE,由三角形两边之和大于第三边,则G、E、D三点共线时,GE+ED=DG最短。作出图形,延长DB至F,使BF则在Rt△DGF中,DF=1+2=3,GF=AB=2CE+DE的最小值是即的最小值是小结:此题由式子特点联想勾股定理,构造图形解决问题。二、用代数与三角方法解决几何问题:例6如图,在△ABC中,AB>AC,CF、BE分别是AB、AC边上的高。试证:证法一:(三角法)因为,证法二:(代数法)由AB>AC>CF,AB>BE及S△ABC>>,=.综上:小结:以上两种证明方法,分别采用了三角法与代数法,较之纯几何证法来,易于想到。例7如图,在正△ABC的三边AB、BC、CA上分别有点D、E、F.若DEBC,EFAC,FDAB同时成立,求点D在AB上的位置.ADADEFCB解:设AB=1,AD=因为△ABC为正三角形,且DEBC,EFAC,FDAB,故,,,而,即解得:即点D位于AB边上分点处.AyAyzxPFEDCB例8如图,△ABC三边的长分别是BC=17,CA=18,AB=19.过△ABC内的点P向△ABC的三边分别作垂线PD、PE、PF(D、E、F为垂足).若求:的长.解:设,,,则,,连接PA、PB、PC.在Rt△PBD和Rt△PFB中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人全日制劳动合同范本
- 电子书概述课件
- 感恩祖国演讲稿14篇
- 校园防金融诈骗
- 康复工作计划七篇
- 安全小卫士教课
- 信用管理培训
- 大学学期自我鉴定12篇
- “资产阶级改良派的早期探索为什么没有成功”教学设计(韩晓娟)
- 读《我的战友邱少云》有感
- 内蒙古工业大学建筑系馆案例分析
- 屋面轻质混凝土找坡层技术交底
- 部编版八年级历史上册《第18课从九一八事变到西安事变》说课稿
- 食品工程原理课程设计花生油换热器的设计
- 国开2023春计算机组网技术形考任务二参考答案
- 五年级上册英语人教PEP版课件书面表达
- PPT:增进民生福祉提高人民生活品质
- 开具红字发票情况说明
- 2022 年奥赛希望杯二年级培训 100题含答案
- 10篇罪犯矫治个案
- 中央企业商业秘密安全保护技术指引2015版
评论
0/150
提交评论