全等三角形判定一(提高)巩固练习_第1页
全等三角形判定一(提高)巩固练习_第2页
全等三角形判定一(提高)巩固练习_第3页
全等三角形判定一(提高)巩固练习_第4页
全等三角形判定一(提高)巩固练习_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE【巩固练习】一、选择题1.(2014秋•西秀区校级期末)如图,△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BDE≌△CDE D.以上答案都不对2.如图,AB∥EF,DE∥AC,BD=CF,则图中不是全等三角形的是()A.△BAC≌FEDB.△BDA≌FCEC.△DEC≌CADD.△BAC≌FCE3.如图,AB=BD,∠1=∠2,添加一个条件可使△ABC≌△DBE,则这个条件不可能是()A.AE=ECB.∠D=∠AC.BE=BCD.∠1=∠DEA4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.△ABC和△中,条件①AB=,②BC=,③AC=,④∠A=∠,⑤∠B=∠,⑥∠C=∠,则下列各组条件中,不能保证△ABC≌△的是()A.①②③ B.①②⑤ C.①③⑤ D.②⑤⑥6.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC二、填空题7.已知:如图,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,判定定理为AAS,需要添加条件______;或添加条件______,证明全等的理由是ASA;8.(2014秋•白云区期末)如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是__________.9.已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.10.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF的长是___________.12.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.三、解答题13.已知:如图,在梯形ABCD中,AD∥BC,E是AB的中点,CE的延长线与DA的延长线相交于点F.(1)求证:△BCE≌△AFE;(2)连接AC、FB,则AC与FB的数量关系是,位置关系是.14.已知:如图,中,,于,于,与相交于点.求证:.15.(2014秋•杭州期末)如图,DC∥AB,∠BAD和∠ADC的角平分线相交于E,过E的直线分别交DC、AB于C、B两点.求证:AD=AB+DC.【答案与解析】一、选择题1.【答案】B.2.【答案】D;3.【答案】A;【解析】D选项可证得∠D=∠A,从而用ASA证全等.4.【答案】B;【解析】C选项和D选项都可以由SSS定理证全等.5.【答案】C;【解析】C选项是两边及一边的对角对应相等,不能保证全等.6.【答案】C;【解析】可证∠BAC=∠E,∠BCA=∠DCE,所以△ABC≌△EDC,DE=AB.二、填空题7.【答案】∠2=∠1;∠E=∠F.8.【答案】AAS9.【答案】6;【解析】△ABF≌△CDE,BE=CF=2,EF=10-2-2=6.10.【答案】6;【解析】△ABO≌△CDO,△AFO≌△CEO,△DFO≌△BEO,△AOD≌△COB,△ABD≌△CDB,△ABC≌△CDA.11.【答案】3;【解析】由AAS证△ABF≌△CBE,EF=FB+BE=CE+AF=2+1=3.12.【答案】66°;【解析】可由SSS证明△ABC≌△DCB,∠OBC=∠OCB=,所以∠DCB=∠ABC=25°+41°=66°三、解答题13.【解析】(1)证明:∵AD∥BC,∴∠1=∠F.∵点E是AB的中点,∴BE=AE.在△BCE和△AFE中,∴△BCE≌△AFE(AAS).(2)相等,平行.14.【解析】证明:∵∴∵∴∴∵∴∴∵∴∴在和中∴≌(AAS)∴15.【解析】证明:延长DE交AB的延长线于F∴∠CDE=∠F,∠CDA+∠BAD=180º∵DE平分∠CDA,AE平分∠DAB∴∠CDE=∠ADE=∠CDA,∠DAE=∠EAF=∠BAD∴∠ADE=∠F,∠ED

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论