基于PLC控制的锅炉自动输煤系统设计(完整资料)_第1页
基于PLC控制的锅炉自动输煤系统设计(完整资料)_第2页
基于PLC控制的锅炉自动输煤系统设计(完整资料)_第3页
基于PLC控制的锅炉自动输煤系统设计(完整资料)_第4页
基于PLC控制的锅炉自动输煤系统设计(完整资料)_第5页
已阅读5页,还剩97页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于PLC控制的锅炉自动输煤系统设计(完整资料)(可以直接使用,可编辑优秀版资料,欢迎下载)

摘要基于PLC控制的锅炉自动输煤系统设计(完整资料)(可以直接使用,可编辑优秀版资料,欢迎下载)本论文主要是以锅炉的自动输煤系统为研究对象,自动输煤系统的出现不仅仅解决了在锅炉输煤过程中只能使用人力的现状,也解决了工作强度大、工作时间长的问题。论文首先简述了锅炉概况,对自动输煤系统的工艺流程进行分析设计,然后对输入输出点进行分配,设计了主电路,对PLC进行分析选择,最后画出梯形图。通过对原有锅炉输煤系统控制方面存在的问题进行分析,采用PLC控制系统选用日本三菱F1—30MR型PLC,通过硬件选取,软件调试,实现整体控制系统结构合理,运转良好的目的.个机械之间均涉及安全连锁保护控制共嫩:系统的输煤电机启停有严格控制顺序,彼此间有相应的联锁互动关系,当启停某台输煤系统设备时。从该设备下面流程的最终输煤设备开始向上逐级启用,最后才能使该台设备启动;当停止某台输煤设备或某台设备故障时,从该设备上面流程的源头给煤设备开始向下逐级停机,左后才能使该台设备停止.这样就保证了上煤传输的正常运行在线控制煤流量,避免了皮带上煤的堆积,也保护了皮带.PLC控制系统硬件设计布局合理,工作可靠,操作,维护方便,工作良好。用PLC输煤程控系统。用PLC来对锅炉输煤系统进行控制。锅炉输煤系统,是指从卸煤开始,一直到将合格的煤块送到煤仓的整个工艺过程,它包括以下几个主要环节:卸煤生产线、煤场、输煤系统、破碎与筛分、配煤系统以及一些辅助生产环节。本设计中主要研究的是其中的输煤系统部分,即煤块从给煤机传输到原煤仓的过程。采用了顺序控制的方法.不但实现了设备运行的自动化管理和监控.提高了系统的可靠性和安全性,而且改善了工作环境,提高了企业经济效益和工作效率。因此PLC电气控制系统具有一定的工程引用和推广价值.关键词:PLC;自动输煤系统;煤料自动控制目录绪论…………………4第1章输煤电控系统的概况………51.1锅炉的概述………………51。2自动输煤系统的工艺过程…………。5第2章输煤系统硬件电路设计………………72.1输入和输出点地址分配及设备选择……。..72.2主电路设计…………。…102。3PLC控制电路设计…………………..11第3章输煤系统软件控制设计………………123。1系统控制流程图………。.。123.2梯形图…………………133。3指令表…………。16总结…………..18致谢………………。.19参考文献………….20绪论锅炉自动输煤系统的主要任务就是实现对煤料的输送、除杂、破碎、提升等工作过程,以达到按时保质保量为机组(原煤仓)提供原煤的目的。整个输煤控制系统是锅炉安全可靠运行十分重要的支持系统,它是保证系统正常运行的重要条件。由于输煤控制系统在整个锅炉控制中心中的重要性,且工作时间长、煤场面积大、工作环境恶劣、人工作业通讯难以畅通,利用现代技术可编程逻辑控制器(PLC)和现代总线网络通讯实现其控制功能。PLC是八十年代发展起来的新一代工业控制装置,是自动控制、计算机和通信技术相结合的产物,是一种专门用于各种工业生产过程自动控制的现场设备.由于控制对象的复杂性,使用环境的恶劣性和运行的长期连续性,使PLC在设计上有自己明显的特点:可靠性高,适应性广,具有通信功能,编程方便,结构模块化。自动输煤控制系统有程序控制、连锁手动、解锁手动三种控制方式。程序控制为系统的最佳控制方式,设备的空载运行时间最短,操作员的操作步序最少。连锁手动方式是对要启动的流程中设备按逆煤流方向一对一的启动,按顺煤流方向一对一停车,设备的保护动作均同自动控制方式.解锁手动是在设备间解除了连锁关系的情况下,一对一启动设备,此方式绝不可带负载运行,因设备已经不存在联跳功能.锅炉输煤控制系统各主要任务就是卸煤,堆煤、上煤和配煤.已达到按时保质保量为机组提供燃煤的目的。整个输煤系统是锅炉安全可靠运行十分重要的支持系统,他是保证机组满发的重要条件。基于输煤控制系统过载整个锅炉控制中心的重要性,且煤场面积大,工作环境恶劣,人工作业通讯难以通畅,在故障停机情况下,可操作上位机的急停按钮或同时按空盒子台右侧红色的急停按钮,它将使现场所有运行中格的收控设备立即停机.第1章输煤电控系统的概况1。1锅炉概况锅炉的燃料多分为煤和燃油,还有天然气等。按其蒸发能力大小可分为三类:小型锅炉、中型锅炉、大型锅炉。锅炉共有六大系统:点火系统、燃料配给系统、燃煤系统,水循环系统,补水系统,送引风系统。从控制角度,锅炉的特点及注意事项如下:(1)设备相互之间往往有一定时间限制的控制顺序.如点火时,给水泵先启动,然后除渣;引风机起动数秒后鼓风机启动;停炉时,先停鼓风和炉排,数秒后停引风和和除渣,最后停水泵。(2)设备间往往有连锁如给煤机和运输机、碎煤机;又如鼓风和引风机.(3)设备间往往有联动,如锅炉故障时,汽泡极低水位;蒸汽压力过高时,应自动停止排风、炉排,起停给水泵等。(4)一般锅炉属于二级负荷,无起动给水的蒸汽锅炉,以补水定压的高温热水锅炉的给水泵应保证可靠供电。(5)每台锅炉宜单独设置控制屏,宜由锅炉配套、宜设集控室,并将其置与室内。(6)线缆宜穿金属管及金属桥架,必须注意敷设时与高温设备的间距.(7)锅炉间、除氧间、水处理和风机间,顶层料仓等的检修照明,宜采用12V安全电压。1.2自动输煤系统的工艺过程1)输煤系统组成输煤系统的组成如图1-1所示煤料经人工或者抓煤机构送给给料器。给料器将煤料送到送煤机P1上的皮带上,煤料随送煤机的皮带进去破碎机上,皮带上有磁选料器,磁选料器的目的是将煤料中的杂质铁去除掉。送入破碎机中的大块煤被破碎机打碎变成可以容易使用的小快煤,经过破碎的煤料在经提升机运到高处,在经过送煤机P2将煤送至卸煤仓或者直接送入锅炉中。控制系统对整个流程进行控制,通过现场的采样反馈和报警系统决定系统的启停。图1—1输煤系统组成示意图1、给煤间;2、提升机;3、送煤机P2;4、运转间;5、破碎机;6、磁选料器;7、送煤P1;8、受煤坑;9、给料器、电磁铁门、堵煤振动器;10、受煤斗2)输煤机工作过程由于被控制对象使用环境的特殊性和运行时间的长期连续性,据供煤系统要求,流程启动时,只按逆煤流方向逐台启动开车顺序:送煤机P2→提升机→破碎机→送煤机P1→给煤器→电磁铁门→堵煤振动器。当系统停车时,过程按顺煤流方向如图1-2逐台停机,停车顺序与开车顺序相反.图1-2输煤机工作过程示意图第2章输煤系统硬件控制设计2.1输入和输出点地址分配及设备选择1)输入点确定输煤系统中分为自动和手动两个部分,分别由旋转开关SA1-1、SA1-2控制,在整个过程中还需要有自动开车按钮、自动停车按钮、紧急停车按钮,分别用SB1、SB2、SB3表示。在手动控制中控制电动机的按钮分别由SB4、SB5、SB6、SB7、SB8表示。在系统中有正常运行信号和过载保护信号装置分别由KM、FR表示。综上所述自动输煤系统输入端点需要12个.2)输出点确定在输煤系统中有五台电动机分别由五个接触器控制,分别由KM1、KM2、KM3、KN4、KM5表示。在系统中各个电动机的运行又有相对应的单机运行指示灯HL1、HL2、HL3、HL4、HL5来指示。当系统开始运行或者停止时报警电铃示警,报警电铃由HA表示。当按下自动开车按钮、自动停车按钮、紧急停车按钮时,相对应的紧急停车指示灯、正常运行指示灯、故障指示灯指示,其分别由HL7、HL8、HL9表示.综上所述自动输煤系统输出端点需要15个。3)PLC的选择三菱公司FN系列PLC吸收了整体式和模块式可编程序控制器的优点,它的基本单元、扩展单元和扩展模块的高度和宽度相同。它们相互连接不用基板,仅用扁平电缆连接,紧密拼装后组成一个整齐的长方体.其体积小,很适合用于在机电一体化产品中。在FX系列中,FX2N是其中功能最强、速度最快的微型可编程序控制器。FX2N有3000多点辅助继电器,1000点状态继电器、200多点定时器、200点16位加计数器、35点32加/减计数器、8000多点16位数据寄存器、128点跳步指针、15点中断指针.这位应用程序的设计提供了丰富的资源。所以本文选择FX2N系列的可编程控制器。在选择PLC中FX2N是FX系列中功能最强,速度最快的微型可编程序控制器.在输煤系统中确定使用13个输入端口和15个输入端口,又考虑到需要备用端口,所以选用三菱FX2N—48MS-001来完成硬件结构配置。4)I/O分配表由上述内容分析可知,共需要输入端点12个和输出端点15个,具体PLC分配如表2—1所示:自动输煤系统是由五台三相异步电动机M1~M5和一台磁选料器YA组成,SA1为自动/手动转换开关,SB1和SB2为自动开车/停车按钮,SB3为事故紧急停车按钮,SB4~SB8为五个控制按钮.HA为开车/停车电铃示警,用来提示在输煤机附近的工作人员注意安全。八个指示灯HL1、HL2、HL3、HL4、HL5、HL7、HL8、HL9,主要用于各电动机运行或停止指示。表2—1自动输煤系统输入/输出点地址分配表输入输出1SA1-1系统手动控制开关X0KM1给料器和磁选料器接触器Y02SA1-2系统自动控制开关X1KM2送煤机P1接触器Y13SB1自动开车按钮X2KM3破碎机接触器Y24SB2自动停车按钮X3KM4提升机接触器Y35SB3紧急停车按钮X4KM5送煤机P2接触器Y46SB4给料器和磁选料器手动按钮X5HL1给料器和磁选料器接触器运行指示Y57SB5送煤机P1手动按钮X6HL2送煤机P1运行指示Y68SB6破碎机手动按钮X7HL3破碎机运行指示Y109SB7提升机手动按钮X10HL4提升机运行指示Y1110SB8送煤机P2手动按钮X11HL5送煤机P2运行指示Y1211KA磁选料器运行正常信号X12HA报警电铃Y1312FR1-FR5电机过载保护信号X13HL6手动运行指示灯Y1413HL7紧急停车指示灯Y1514HL8正常运行指示灯Y1615HL9故障指示灯Y175)主要设备的选择A、电动机的选择根据实际考察估算,选择电动机的型号为:给料器、破碎机选择Y132S1-2,功率5.5KW,额定电压380V、额定电流11.1A.送煤机P1、送煤机P2,提升机选择Y225M-2,功率为45KW,额定电压380V、额定电流83。9A。B、熔断器选择熔断器熔体的额定电流Ier的选择必需满足下列条件:熔体在线路中或电动机正常工作时不应熔断需满足:Ier≥Ijs式中Ijs为正常运行时流经熔体的工作电流。对于单台电动机支线,Ijs就是电动机的额定电流(A);熔体在电动机启动时不应熔断需满足:Ier≧式中为躲开电动机启动电流的计算系数,其值与电动机的启动情况(轻载或重载启动)、熔断器的型号特性及熔体的额定电流Ier值得大小因数有关。根据上述条件,经查《工业企业供电》中表3-3,《电力工程电气设备手册》经计算所选相应熔断器。保护给料器、破碎机相应熔断器为RL150/30,保护送煤机P1、提升机、送煤机P2相应熔断器为RL1200/150。C、接触器选择根据要求接触器选择SUNWORLDCJ20系列220V交流接触器,接触器适用于不间断工作制,断续周期工作制,各设备所选对应接触器为给料器、破碎机对应接触器为CJ20-25型号,送煤机P1、提升机、送煤机P2对应的接触器为J20-100型号。D、继电器选择电动机M1、M2、M3、M4、M5分别由继电器FR1、FR2、FR3、FR4、FR5来实现过载保护,使用中应该考虑电动机的工作环境、启动情况、负载性质等因素具体应按以下几个方面来选择。(1)根据被保护电动机的实际启动时间选取6倍额定电流下具有相应可返回时间的热继电器。一般热继电器的可返回时间大约为6倍额定电流下动作时间的50%~70%。(2)热元件额定电流一般可按式2-1确定In=(0.95~1.05)Imn(2-1)式中:In为热元件额定电流,Imn为电动机的额定电流根据电动机的额定电流可选择给料器、破碎机所对应的热继电器选择TR16—20/3D型号,送煤机P1、提升机、送煤机P2对应的热继电器选择TR16-150/3型号。E、电铃与指示灯的选择其中指示灯功率选择为0.25KW,电铃HA选择为8W,电源都为交流电220V。2.2主电路设计根据系统需要设计出电路如图2—1所示图2-1锅炉车间运煤机组系统主电路图1)给料器、送煤机P1、破碎机、提升机、送煤机P2的电动机分别为M1、M2、M3、M4、M5,它们分别由继电器FR1、FR2、FR3、FR4、FR5来控制实现电路的过载保护.2)QF为电源总开关,电源总开关既可以完成主电路的短路保护,又起到分段三相交流电源的作用,而且电源总开关使用和维护也很方便。3)熔断器FU1、FU2、FU3、FU4、FU5分别实现系统中各负载回路的短路保护。当发生过载时熔断器断掉,使系统不能工作。4)主电路中接触器KM1、KM2、KM3、KM4、KM5分别控制三相异步电动机M1、M2、M3、M4、M5.2。3PLC控制电路绘制PLC控制电路接线图如下图2-2所示:图2—2PLC控制电路接线图第3章输煤系统软件控制设计3.1系统流程图根据输煤系统控制要求,建立自动输煤系统流程图,如下图所示,表达出各控制对象的动作顺序,相互的制约关系。在明确PLC寄存器空间分配,进行控制的程序设计,包括主程序编制,其它各功能子程序编制,其它辅助程序的编制等.图3-1系统自动控制流程图1)正常开车当按下系统自动开车按钮X2,报警电铃运行10S,送煤机P2电动机运行,对应的单机运行指示灯HL1点亮,并延时10S;10S后,提升机电动机运行,对应的单机运行指示灯HL2点亮,并延时10S;10S后,破碎电动机运行,对应按钮的单机运行指示灯HL3点亮,并延时10S;10S后,送煤机P2电动机运行,对应的单机运行指示灯HL4点亮,并延时10S;10S后,给料器和磁选料器电动机运行,对应的单机运行指示灯HL5点亮,并延时10S;10S后,点亮系统正常运行指示灯HL6,输煤系统正常运行。2)正常停车当按下系统自动停车按钮X3,报警电铃运行10S,延时10S后,给料器和磁选料器电动机停车,对应的单机运行指示灯HL5熄灭,并延时10S。10S后,送煤机P2电动机停车,对应的单机运行指示灯HL4熄灭,并延时10S。10S后,破碎电动机停车,对应的单机运行指示灯HL3熄灭,并延时10S.10S后,提升机电动机停车,对应的单机运行指示灯HL2熄灭,并延时10S.10S后,送煤机P2电动机停车,对应的单机运行指示灯HL1熄灭,并延时10S,输煤机组全部正常停机。3)过载保护输煤系统中有三相异步电动机M1~M5,每台电动机都有相对应的过载保护装置热继电器,在系统中电动机如果发生故障必须立即全线停车,来保护电动机不被损害,停车后系统故障指示灯HL9,HA电铃连续报警20S,HL9一直亮到故障处理完毕后,继续正常开车,恢复正常生产.4)紧急停车在输煤系统中,可能会有很多事故发生,如果不及时处理的话,会造成很大的损失,因此在系统中还需要设置紧急停车按钮,防止事故的扩大化.当按下紧急停止按钮时,整个系统必须立即停止运行,HA报警电铃连续10S停止,相对应的指示灯HL7连续闪亮,输煤系统停止。5)系统正常运行指示输煤系统如果正常运行时HL8点亮。3。2梯形图根据自动输煤系统的要求,画出梯形图如图3-2所示:0~44为主程序,45~80为保护程序,81~222为自动程序。图3—2梯形图3.3指令表0LDX0011CJP04LDX0005OUTY0146MPS7ANDX0058OUTY0009OUTY00510MRD11ANDY00612OUTY00113OUTY00614MRD15ANDX00716OUTY00217OUTYO1018MRD19ANDX01020OUTY00321OUTY01122MPP23ANDX01124OUTY00425OUTY01226LDY00027ORY00128ORY00229ORY00330ORY00431PLSM033PLFM135LDM036ORM137SETY01338LDY01339OUTT2K10042LDT2043RSTY01344FEND45LDX01346ANIT1247ANDM800248LDX00049ANIT1350ORBS51OUTY01452LDX01353ZRSTS20S2558OUTY01759OUTT12S2562LDX00063ZRSTS20S2568MPS69ANIT1370OUTT13K10073MRD74ANIT1475ANDM800276OUTY01577MPP78OUTT14K10081LDX00282PLSM084LDM085SETS087STLS088ZRSTS20S2593LDX00294ANIX00095ANIX01396SETS2098STLS2099OUTY013100OUTT1K100103LDT1104SETS21106STLS21107SETY004108SETY012109OUTT2K100112LDT2113SETS22115STLS22116SETY003117SETY011118OUTT3K100121LDT3122SETS22124STLS23125SETY002126SETY010127OUTT4K100130LDT4131SETS24133STLS24134SETY011135SETY006136OUTT5K100139LDT5140SETS25142STLS25143SETY000144SETY005145OUTT6K100148LDT6149SETS26151STLS26152LDY004153ANDY003154ANDY002155ANDY001156ANDY000157SETY016158LDY016159OUTY017160LDY017161ZRSTS20S25166LDX003167ANIY016168SETS27170STLS27171OUTY013172OUTT7K100175LDT7176SETS28178STLS28179RSTY000180RSTY005181RSTY016182OUTT8K100185LDT9186SETS29188STLS29189RSTY001190RSTY006191OUTT9K100194LDT9195SETS30197STLS30198RSTY002199RSTY010200OUTT11K100203LDT10204SETS31206STLS31207RSTY003208RSTY011209OUTT11K100212LDT11213SETS32215STLS32216RSTY004217RSTY012218LDT12219OUTS0220RSTY016221RET222END总结经过几个月的艰苦努力,毕业论文就要告一段落,通过本次设计,令我学到了很多的知识,仿佛又再次经历了一次系统学习。在毕业设计前一直认为没有什么困难,但在实际运作过称中才清楚的认识到自己的不足和短练,端正了学习态度。本次设计使我加深巩固了理论知识,更深刻的意识到理论知识的重要性,了解了具体应用范围和应用方法。提高了动手和实际解决问题的能力,提高了对问题系统解决的意识。能够把握毕业论文的核心,而且还提高了自己对资料的查询能力。也认识到了人际交往在工作学习中的重要性.自动输煤系统是锅炉上重要的组成部分,自动输煤系统中原煤经过给料器、送煤机P1、磁选料器、破碎机、提升机、送煤机P2送到工作地点,实现了煤料的自动输送。解决了工作时间长、环境恶劣、工作强度大的问题。可编程控制器是一种将计算机、自动控制技术和通信技术相互结合在一起的新型工业自动控制设备。它是把继电器控制的优点,与计算机的功能齐全、灵活性、通用性相结合,用计算机编程软件逻辑代替继电器接线逻辑的通用性自动控制备。是一种较理想的新型工业控制装置。ﻩ通过本次毕业设计的锻炼,使我更加自信,更加智慧。使我更快的融入到将来的社会。经过两个多月的努力,终于有了一个较成型的设计展现在了我面前,加深了对PLC控制系统的了解,更加清楚的认识到其在现代化工业中起到的巨大作用.由于本人水平有限,难免有考虑不足之处,所以恳请老师和同学批评指正。致谢毕业论文暂告收尾,这也意味着我在南通广播电视大学的四年的学习生活既将结束。回首既往,自己一生最宝贵的时光能于这样的校园之中,能在众多学富五车、才华横溢的老师们的熏陶下度过,实是荣幸之极。在这四年的时间里,我在学习上和思想上都受益非浅。这除了自身努力外,与各位老师、同学和朋友的关心、支持和鼓励是分不开的论文的写作是枯燥艰辛而又富有挑战的。写作是理论界一直探讨的热门话题,老师的谆谆诱导、同学的出谋划策及家长的支持鼓励,是我坚持完成论文的动力源泉。在此,我特别要感谢我的导师陆丽丽老师。本文从选题的确定,论文的写作,修改到最后定稿得到了我的指导老师陆丽丽老师的悉心指导。特别是他多次询问我写作进程,并为我指点迷津,帮助我开拓思路,精心点拨,热忱鼓励。他严肃的教学态度,严谨的治学精神,精益求精的工作作风深深的感染和激励着我。在此,谨此向陆老师致以诚挚的谢意和崇高的敬意,感谢陆感谢机电系的各位同学,与他们的交流使我受益颇多。最后要感谢我的家人以及我的朋友们对我的理解、支持、鼓励和帮助,正是因为有了他们,我所做的一切才更有意义;也正是因为有了他们,我才有了追求进步的勇气和信心。谢谢!参考文献[1]谢存禧机电一体化生产系统设计北京:机械工业出版社,(1999)[2]胡泓、姚伯威机电一体化原理及应用北京:国防工业出版社,(1999)[3]黄大贵微机数控系统成都:电子科技大学出版社,(1996)[4]黄俊等电力电子变流技术北京:机械工业出版社,(1999)[5]郑堤、唐可洪机电一体化设计基础北京:机械工业出版社,(1997)[6]庞振基精密机械设计北京:机械工业出版社,(2000)[7]谭福年常用传感器应用电路成都,电子科技大学出版社,(1996)[8]冯辛安机械制造装备设计北京:机械工业出版社,(1999)[9]梁景凯机电一体化技术与系统北京:机械工业出版社,(1997)[10]张淑清单片微型计算机接口技术北京:国防工业出版社,(2001)[11]张根保自动化制造系统北京:机械工业出版社,(1999)[12]赖寿宏微型计算机控制技术北京:机械工业出版社,(2000)[13]黄贤武传感器原理及应用成都:电子科技大学出版社,(1999)[14]徐志毅机电一体化实用技术上海:上海科学技术文献出版社,(1995)[15]张建民机电一体化系统设计北京:北京理工大学出版社,(1996)[16]何立民单片机应用技术选编北京:北京航空航天大学出版社,(1996)[17]秦曾煌电工学北京:高等教育出版社,(1999)ﻫ

基于PLC的城市供热锅炉水温控制系统设计作者姓名叶凯专业自动化指导教师姓名刘光亚专业技术职务教授目录TOC\o"1-3”\u摘要1第一章绪论PAGEREF_Toc170114513\h31。1课题背景及研究目的和意义PAGEREF_Toc170114514\h31。2国内外研究现状31.3项目研究内容4第二章PLC和组态软件基础52.1可编程控制器基础52。1.1可编程控制器的产生和应用52.1.2可编程控制器的组成和工作原理PAGEREF_Toc170114520\h52。1.3可编程控制器的分类及特点72.2组态软件的基础82。2.1组态的定义82.2.2组态王软件的特点82.2.3组态王软件仿真的基本方法8第三章PLC控制系统的硬件设计93.1PLC控制系统设计的基本原则和步骤93。1.1PLC控制系统设计的基本原则93。1。2PLC控制系统设计的一般步骤93.1.3PLC程序设计的一般步骤103。2PLC的选型和硬件配置113。2.1PLC型号的选择113.2。2S7—200CPU的选择123。2.3EM235模拟量输入/输出模块123。2.4热电式传感器123.2.5可控硅加热装置简介123.3系统整体设计方案和电气连接图133。4PLC控制器的设计143.4。1控制系统数学模型的建立143.4.2PID控制及参数整定14第四章PLC控制系统的软件设计164.1PLC程序设计的方法164.2编程软件STEP7—-Micro/WIN概述174.2.1STEP7--Micro/WIN简单介绍174.2。2计算机与PLC的通信184.3程序设计184.3.1程序设计思路184.3.2PID指令向导194。3。3控制程序及分析25第五章组态画面的设计295.1组态变量的建立及设备连接295.1。1新建项目295。2创建组态画面335.2。1新建主画面335.2。2新建PID参数设定窗口345.2。3新建数据报表345.2.4新建实时曲线355.2.5新建历史曲线355.2.6新建报警窗口36第六章系统测试376.1启动组态王376。2实时曲线观察386。3分析历史趋势曲线386.4查看数据报表406.5系统稳定性测试42结束语43参考文献44致谢45摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决定了产品的质量好坏。目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度.本文分别就电热锅炉的控制系统工作原理,温度变送器的选型、PLC配置、组态软件程序设计等几方面进行阐述。通过改造电热锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。关键词:电热锅炉的控制系统温度控制串级控制PLCPIDABSTRACTFromthelastcenturyto90inthemid80's,PLChasbeenrapiddevelopmentinthisperiod,PLCcapabilityindealingwithanaloganddigitalcomputingpower,man-machineinterfacecapabilitiesandnetworkcapabilitiesaregreatlyimproved,PLCgraduallyenteringthefieldofprocesscontrol,replacedinsomeapplicationsinthefieldofprocesscontroldominantDCS.PLChastheversatility,easeofuse,wideadaptation,highreliabilityandstronganti-interference,simpletoprogramandsoon.PLCcontrol,especiallyintheindustrialautomationsequencecontroltheposition,intheforeseeablefuture,isnosubstitute.ThispaperintroducestheboilerasthechargedobjecttotheboilerwatertemperatureofthemainaccusedoftheexportparameterstofurnacetemperatureasdeputyaccusedofparameterstocontroltheheatingresistancewirevoltageparameterstoPLC,controller,constitutesaseriesofboilertemperaturelevelcontrolsystem;usingPIDalgorithm,theuseofPLCladderprogramminglanguage,programming,boilertemperaturecontrol.Electricboilersawiderangeofapplications,inaconsiderablenumberoffield,theelectricboilerperformanceadvantagesanddisadvantagesofthedecisionThequalityoftheproduct.Electricboilercontrolsystemscurrentlyusedmostlyforcomputercontrolmicroprocessorcoretechnology,bothtoimprovetheautomationequipmenthaveimprovedthecontrolprecisionequipment。Thispaperontheheatingboilercontrolsystemworks,selectionoftemperaturetransmitter,PLCconfigurations,theconfigurationsoftwaredesignaspectsweredescribed。Throughthetransformationofelectricboilercontrolsystemhasfastresponse,goodstability,highreliability,controlaccuracyandgoodfeatures,practicalsignificanceforindustrialcontrol.Keywords:heatingboilercontrolsystemtemperaturecontrolcascadecontrolPLCPID第一章绪论1.1课题背景及研究目的和意义基于PLC的城市供热锅炉水温控制系统的应用领域相当广泛,电热锅炉的性能优劣决定了产品的质量好坏.目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。PLC的快速发展发生在上世纪80年代至90年代中期。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到了很大的提高和发展。PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。[4]电热锅炉是机电一体化的产品,可将电能直接转化成热能,具有效率高,体积小,无污染,运行安全可靠,供热稳定,自动化程度高的优点,是理想的节能环保的供暖设备。加上目前人们的环保意识的提高,电热锅炉越来越受人们的重视,在工业生产和民用生活用水中应用越来越普及。电热锅炉目前主要用于供暖和提供生活用水.主要是控制水的温度,保证恒温供水。PID控制是迄今为止最通用的控制方法之一。因为其可靠性高、算法简单、鲁棒性好,所以被广泛应用于过程控制中,尤其适用于可建立精确数学模型的确定性系统。PID控制的效果完全取决于其四个参数,即采样周期ts、比例系数Kp、积分系数Ki、微分系数Kd。因而,PID参数的整定与优化一直是自动控制领域研究的重要课题.PID在工业过程控制中的应用已有近百年的历史,在此期间虽然有许多控制算法问世,但由于PID算法以它自身的特点,再加上人们在长期使用中积累了丰富经验,使之在工业控制中得到广泛应用。在PID算法中,针对P、I、D三个参数的整定和优化的问题成为关键问题。[5]1.2国内外研究现状自70年代以来,由于工业过程控制的需要,特别是微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国内外温度控制系统的发展迅速,并在智能化,自适应、参数整定等方面取得成果,在这方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪器仪表,并在各行各业广泛应用。它们主要有以下特点:1)适应于大惯性、大滞后等复杂的温度控制体统的控制。2)能适应于受控系统数学模型难以建立的温度控制系统的控制。3)能适用于受控系统过程复杂、参数时变的温度控制系统的控制.4)这些温度控制系统普遍采用自适应控制、自校正控制、模糊控制、人工智能等理论及计算机技术,运用先进的算法,适应范围广泛。5)温度控制器普遍具有参数整定功能.借助于计算机软件技术,温度控制器具有对控制参数及特性进行自整定的功能。有的还具有自学习功能。6)温度控制系统既有控制精度高、抗干扰能力强、鲁棒性好的特点。目前,国外温度控制系统及仪表正朝着高精度、智能化、小型化等方向发展。随温度控制系统在国内各行各业的应用虽然应用很广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比仍然有着较大的差距.目前,我国在这方面总体水平处于20世纪80年代中后期的水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适用于一般的温度系统的控制,难以控制滞后、复杂、时变温度系统控制。能适应于较高的控制场合的智能化、自适应控制仪表,国内还不十分成熟.随着科学技术的不断发展,人们对温度控制系统的要求越来越高,因此,高精度、智能化、人性化的温度控制系统是国内外必然发展的趋势。1。3项目研究内容以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。可编程逻辑控制器(PLC)是集计算机技术、自动控制技术和通信技术为一体的新型自动控制装置。其性能优越,已被广泛的应用于工业控制的各个领域,并已经成为工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)之一。PLC技术在温度监控系统上的应用从整体上分析和研究了控制系统的硬件配置、电路图的设计、程序设计,控制对象数学模型的建立、控制算法的选择和参数的整定、人机界面的设计等。论文通过对德国西门子公司的S7-200系列PLC控制器,温度传感器将检测到的实际炉温转化为电压信号,经过模拟量输入模块转换成数字信号送到PLC中进行PID调节,PID控制器输出转化为0-10mA的电流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率。对于监控画面,利用亚控公司的组态软件“组态王“串级系统是由调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。整个系统包括两个控制回路,主回路和副回路.副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动.二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。副调节器具有“粗调"的作用,主调节器具有“细调"的作用,从而使其控制品质得到进一步提高.[7]第二章PLC和组态软件基础可编程控制器是是一种工业控制计算机,简称PLC(ProgrammablelogicController),它使用可编程序的记忆以存储指令,用来执行逻辑、顺序、计时、计数、和演算等功能,并通过数字或模拟的输入输出,以控制各种机械或生产过程。2。1可编程控制器基础2.1。1可编程控制器的产生和应用1969年美国数字设备公司成功研制世界第一台可编程序控制器PDP-14,并在GM公司的汽车自动装配线上首次使用并获得成功。1971年日本从美国引进这项技术,很快研制出第一台可编程序控制器DSC-18。1973年西欧国家也研制出他们的第一台可编程控制器.我国从1974年开始研制,1977年开始工业推广应用。进入20世纪70年代,随着电子技术的发展,尤其是PLC采用通讯微处理器之后,这种控制器功能得到更进一步增强。进入20世纪80年代,随着大规模和超大规模集成电路等微电子技术的迅猛发展,以16位和少数32位微处理器构成的微机化PLC,使PLC的功能增强,工作速度快,体积减小,可靠性提高,成本下降,编程和故障检测更为灵活,方便.目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。2.1.2可编程控制器的组成和工作原理可编程控制器的组成:PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架。1。CPUCPU是PLC的核心,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模.2.I/O模块PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态.输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。常用的I/O分类如下:开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。模拟量:按信号类型分,有电流型(4—20mA,0-20mA)、电压型(0—10V,0—5V,—10—10V)等,按精度分,有12bit,14bit,16bit等。除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。3.编程器编程器的作用是用来供用户进行程序的输入、编辑、调试和监视的。编程器一般分为简易型和智能型两类。简易型只能联机编程,且往往需要将梯形图转化为机器语言助记符后才能送入。而智能型编程器(又称图形编程器),不但可以连机编程,而且还可以脱机编程。操作方便且功能强大.4.电源PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。[6]可编程控制器的工作原理:PLC的工作方式是一个不断循环的顺序扫描工作方式。每一次扫描所用的时间称为扫描周期或工作周期。CPU从第一条指令开始,按顺序逐条地执行用户程序直到用户程序结束,然后返回第一条指令开始新的一轮扫描.PLC就是这样周而复始地重复上述循环扫描的。PLC工作的全过程可用图2-1所示的运行框图来表示。图2-1可编程控制器运行框图2。1。3可编程控制器的分类及特点(一)小型PLC小型PLC的I/O点数一般在128点以下,其特点是体积小、结构紧凑,整个硬件融为一体,除了开关量I/O以外,还可以连接模拟量I/O以及其他各种特殊功能模块。它能执行包括逻辑运算、计时、计数、算术、运算数据处理和传送通讯联网以及各种应用指令。(二)中型PLC中型PLC采用模块化结构,其I/O点数一般在256~1024点之间,I/O的处理方式除了采用一般PLC通用的扫描处理方式外,还能采用直接处理方式即在扫描用户程序的过程中直接读输入刷新输出,它能联接各种特殊功能模块,通讯联网功能更强,指令系统更丰富,内存容量更大,扫描速度更快.(三)大型PLC一般I/O点数在1024点以上的称为大型PLC,大型PLC的软硬件功能极强,具有极强的自诊断功能、通讯联网功能强,有各种通讯联网的模块可以构成三级通讯网实现工厂生产管理自动化,大型PLC还可以采用冗余或三CPU构成表决式系统使机器的可靠性更高2。2组态软件的基础2.2。1组态的定义组态就是用应用软件中提供的工具、方法,完成工程中某一具体任务的过程.组态软件是有专业性的,一种组态软件只能适合某种领域的应用。组态的概念最早出现在工业计算机控制中,如DCS(集散控制系统)组态,PLC梯形图组态。人机界面生成软件就叫工控组态软件。工业控制中形成的组态结果是用在实时监控的。从表面上看,组态工具的运行程序就是执行自己特定的任务.工控组态软件也提供了编程手段,一般都是内置编译系统,提供类BASIC语言,有的支持VB,现在有的组态软件甚至支持C#高级语言.在当今工控领域,一些常用的大型组态软件主要有:ABB-OptiMax,WinCC,iFix,Intouch,组态王,力控,易控,MCGS等。本设计采用亚控的组态王软件进行组态的设计.2。2.2组态王软件的特点组态王软件具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。尤其考虑三方面问题:画面、数据、动画.通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。而且,它能充分利用Windows的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能[8]。2.2。3组态王软件仿真的基本方法(1)图形界面的设计图形,是用抽象的图形画面来模拟实际的工业现场和相应的工控设备。(2)构造数据库数据,就是创建一个具体的数据库,并用此数据库中的变量描述工控对象的各种属性,比如水位、流量等.建立动画连接连接,就是画面上的图素以怎样的动画来模拟现场设备的运行,以及怎样让操作者输入控制设备的指令。运行和调试第三章PLC控制系统的硬件设计本章主要从系统设计结构和硬件设计的角度,介绍该项目的PLC控制系统的设计步骤、PLC的硬件配置、外部电路设计以及PLC控制器的设计参数的整定。3。1PLC控制系统设计的基本原则和步骤3.1。1PLC控制系统设计的基本原则1.充分发挥PLC功能,最大限度地满足被控对象的控制要求。2。在满足控制要求的前提下,力求使控制系统简单、经济、使用及维修方便.3.保证控制系统安全可靠。4。应考虑生产的发展和工艺的改进,在选择PLC的型号、I/O点数和存储器容量等内容时,应留有适当的余量,以利于系统的调整和扩充。3.1.2PLC控制系统设计的一般步骤设计PLC应用系统时,首先是进行PLC应用系统的功能设计,即根据被控对象的功能和工艺要求,明确系统必须要做的工作和因此必备的条件。然后是进行PLC应用系统的功能分析,即通过分析系统功能,提出PLC控制系统的结构形式,控制信号的种类、数量,系统的规模、布局。最后根据系统分析的结果,具体的确定PLC的机型和系统的具体配置。PLC控制系统设计可以按以下步骤进行:1.熟悉被控对象,制定控制方案分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,确定被控对象对PLC控制系统的控制要求。2。确定I/O设备根据系统的控制要求,确定用户所需的输入(如按钮、行程开关、选择开关等)和输出设备(如接触器、电磁阀、信号指示灯等)由此确定PLC的I/O点数.3.选择PLC选择时主要包括PLC机型、容量、I/O模块、电源的选择.4.分配PLC的I/O地址根据生产设备现场需要,确定控制按钮,选择开关、接触器、电磁阀、信号指示灯等各种输入输出设备的型号、规格、数量;根据所选的PLC的型号列出输入/输出设备与PLC输入输出端子的对照表,以便绘制PLC外部I/O接线图和编制程序。5.设计软件及硬件进行PLC程序设计,进行控制柜(台)等硬件的设计及现场施工。由于程序与硬件设计可同时进行,因此,PLC控制系统的设计周期可大大缩短,而对于继电器系统必须先设计出全部的电气控制线路后才能进行施工设计。6.联机调试联机调试是指将模拟调试通过的程序进行在线统调。3。1。3PLC程序设计的一般步骤1.绘制系统的功能图。2.设计梯形图程序。3.根据梯形图编写指令表程序。4.对程序进行模拟调试及修改,直到满足控制要求为止。调试过程中,可采用分段调试的方法,并利用编程器的监控功能。PLC控制系统的设计步骤可参考图3-1:图3-1PLC控制系统的设计步骤3.2PLC的选型和硬件配置3。2.1PLC型号的选择本温度控制系统采用德国西门子S7-200PLC。S7-200是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化.S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。3.2.2S7—200CPU的选择S7-200系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。此系统选用的S7-200CPU226,CPU226集成24输入/16输出共40个数字量I/O点.可连接7个扩展模块,最大扩展至248路数字量I/O点或35路模拟量I/O点.13K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。3.2。3EM235模拟量输入/输出模块在温度控制系统中,传感器将检测到的温度转换成4-20mA的电流信号,系统需要配置模拟量的输入模块把电流信号转换成数字信号再送入PLC中进行处理.在这里我们选择西门子的EM235模拟量输入/输出模块。EM235模块具有4路模拟量输入/一路模拟量的输出。它允许S7-200连接微小的模拟量信号,±80mV范围。用户必须用DIP开关来选择热电偶的类型,断线检查,测量单位,冷端补偿和开路故障方向:SW1~SW3用于选择热电偶的类型,SW4没有使用,SW5用于选择断线检测方向,SW6用于选择是否进行断线检测,SW7用于选择测量方向,SW8用于选择是否进行冷端补偿。所有连到模块上的热电偶必须是相同类型。3.2.4热电式传感器热电式传感器是一种将温度变化转化为电量变化的装置。在各种热电式传感器中,以将温度量转换为电势和电阻的方法最为普遍。其中最为常用于测量温度的是热电偶和热电阻,热电偶是将温度转化为电势变化,而热电阻是将温度变化转化为电阻的变化。这两种热电式传感器目前在工业生产中被广泛应用。该系统需要的传感器是将温度转化为电流,且水温最高是100℃,所以选择Pt100铂热电阻传感器。P100铂热电阻,简称为:PT100铂电阻,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工作原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的的阻值会随着温度上升它的阻值成匀速增长[3]。3。2。5可控硅加热装置简介对于要求保持恒温控制而不要温度记录的电阻炉采用带PID调节的数字式温度显示调节仪显示和调节温度,输出0~10mA作为直流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率,完全可以满足要求,投入成本低,操作方便直观并且容易维护。温度测量与控制是热电偶采集信号通过PID温度调节器测量和输出0~10mA或4~20mA控制触发板控制可控硅导通角的大小,从而控制主回路加热元件电流大小,使电阻炉保持在设定的温度工作状态。可控硅温度控制器由主回路和控制回路组成。主回路是由可控硅,过电流保护快速熔断器、过电压保护RC和电阻炉的加热元件等部分组成。3.3系统整体设计方案和电气连接图系统选用了PLCCPU226为控制器,PT100型热电阻将检测到的实际锅炉水温转化为电流信号,经过EM231模拟量输入模块转化成数字量信号并送到PLC中进行PID调节,PID控制器输出转化为0~10mA的电流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率,从而调节电热丝的加热。PLC和组态王连接,实现了系统的实时监控。整体设计方案如图3-3:EM235锅炉PT100EM235锅炉PT100PLC计算机可控硅可控硅图3-3整体设计方案TT1TT224VTT1TT2系统硬件连线图如图3-4:RAA+A-RBB+B-RCC+C-RDD+D-EM235输入ML+DCCPU226COM1COM2输出RAA+A-RBB+B-RCC+C-RDD+D-EM235输入ML+DCCPU226COM1COM2输出MOVOIOML+1MI0.0I1.42MI1.5I2.7ML+MOVOIOML+1MI0.0I1.42MI1.5I2.7ML+电源负载载电源负载载图3-4系统硬件连线图3。4PLC控制器的设计控制器的设计是整个控制系统设计中最重要的一步.首先要根据受控对象的数学模型和它的各特性以及设计要求,确定控制器的结构以及和受控对象的连接方式。最后根据所要求的性能指标确定控制器的参数值。3.4.1控制系统数学模型的建立在本控制系统中,TT1(出口温度传感器)将检测到的出口水温度信号转化为电流信号送入EM235模块的A路,TT2(炉膛温度传感器)将检测到的出口水温度信号转化为电流信号送入EM235模块的B路.两路模拟信号经过EM235转化为数字信号送入PLC,PLC再通过PID模块进行PID调节控制。具体流程在第四章程序编写的时候具体论述.由PLC的串级控制系统框图如图3—5:图中输入输出分别为?图中输入输出分别为?主调节器炉膛可控硅锅炉出口副调节器主调节器炉膛可控硅锅炉出口副调节器副变送器副变送器主变送器主变送器如图3-5串级控制系统框图3.4.2PID控制及参数整定1.PID控制器的组成PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成.其数学表达式为:公式(3-1)(1)比例系数KC对系统性能的影响:比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小。Kc偏大,振荡次数加多,调节时间加长。Kc太大时,系统会趋于不稳定.Kc太小,又会使系统的动作缓慢。Kc可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。如果Kc的符号选择不当对象状态(pv值)就会离控制目标的状态(sv值)越来越远,如果出现这样的情况Kc的符号就一定要取反。(2)积分控制Ti对系统性能的影响:积分作用使系统的稳定性下降,Ti小(积分作用强)会使系统不稳定,但能消除稳态误差,提高系统的控制精度。(3)微分控制Td对系统性能的影响:微分作用可以改善动态特性,Td偏大时,超调量较大,调节时间较短。Td偏小时,超调量也较大,调节时间也较长。只有Td合适,才能使超调量较小,减短调节时间。2.主、副回路控制规律的选择采用串级控制,所以有主副调节器之分。主调节器起定值控制作用,副调节器起随动控制作用,这是选择规律的基本出发点.主参数是工艺操作的重要指标,允许波动的范围较小,一般要求无余差,因此,主调节器一般选PI或PID控制,副参数的设置是为了保证主参数的控制质量,可允许在一定范围内变化,允许有余差,因此副调节器只要选P控制规律就可以。在本控制系统中,我们将锅炉出口水温度作为主参数,炉膛温度为副参数.主控制采用PI控制,副控制器采用P控制。3.主、副调节器正、反作用方式的确定副调节器作用方式的确定:首先确定调节阀,出于生产工艺安全考虑,可控硅输出电压应选用气开式,这样保证当系统出现故障使调节阀损坏而处于全关状态,防止燃料进入加热炉,确保设备安全,调节阀的Kv〉0.然后确定副被控过程的K02,当调节阀开度增大,电压增大,炉膛水温度上升,所以K02>0。最后确定副调节器,为保证副回路是负反馈,各环节放大系数(即增益)乘积必须为负,所以副调节器K2〈0,副调节器作用方式为反作用方式.主调节器作用方式的确定:炉膛水温度升高,出口水温度也升高,主被控过程K01〉0。为保证主回路为负反馈,各环节放大系数乘积必须为负,所以主调节器的放大系数K1<0,主调节器作用方式为反作用方式[7].4。采样周期的分析采样周期Ts越小,采样值就越能反应温度的变化情况。但是,Ts太小就会增加CPU的运算工作量,相邻的两次采样值几乎没什么变化,将是PID控制器输出的微分部分接近于0,所以不应使采样时间太小.,确定采样周期时,应保证被控量迅速变化时,能用足够多的采样点,以保证不会因采样点过稀而丢失被采集的模拟量中的重要信息。因为本系统是温度控制系统,温度具有延迟特性的惯性环节,所以采样时间不能太短,一般是15s~20s,本系统采样17s经过上述的分析,该温度控制系统就已经基本确定了,在系统投运之前还要进行控制器的参数整定。常用的整定方法可归纳为两大类,即理论计算整定法和工程整定法。理论计算整定法是在已知被控对象的数学模型的基础上,根据选取的质量指标,经过理论的计算(微分方程、根轨迹、频率法等),求得最佳的整定参数.这类方法比较复杂,工作量大,而且用于分析法或实验测定法求得的对象数学模型只能近似的反映过程的动态特征,整定的结果精度不是很高,因此未在工程上受到广泛的应用.对于工程整定法,工程人员无需知道对象的数学模型,无需具备理论计算所学的理论知识,就可以在控制系统中直接进行整定,因而简单、实用,在实际工程中被广泛的应用常用的工程整定法有经验整定法、临界比例度法、衰减曲线法、自整定法等.在这里,我们采用经验整定法整定控制器的参数值。整定步骤为“先比例,再积分,最后微分”.(1)整定比例控制将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。(2)整定积分环节若在比例控制下稳态误差不能满足要求,需加入积分控制。先将步骤(1)中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。(3)整定微分环节若经过步骤(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制.先置微分时间TD=0,逐渐加大TD,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数.第四章PLC控制系统的软件设计PLC控制系统的设计主要包括硬件设计和软件设计两部分本在硬件基础上,详细介绍本项目的软件设计,主要包括软件设计的基本步骤、方法、编程软件STEP7-Micro/WIN的介绍以及本项目的程序设计.4.1PLC程序设计的方法PLC程序设计常用的方法:主要有经验设计法、继电器控制电路转换为梯形图法、顺序控制设计法、逻辑设计法等.1.经验设计法:经验设计法即在一些典型的控制电路程序的基础上,根据被控制对象的具体要求,进行选择组合,并多次反复调试和修改梯形图,有时需增加一些辅助触点和中间编程环节,才能达到控制要求。这种方法没有规律可遵循,设计所用的时间和设计质量与设计者的经验有很大的关系,故称为经验设计法。2。继电器控制电路转换为梯形图法:用PLC的外部硬件接线和梯形图软件来实现继电器控制系统的功能。3。顺序控制设计法:根据功能流程图,以步为核心,从起始步开始一步一步地设计下去,直至完成。此法的关键是画出功能流程图。4.逻辑设计法:通过中间量把输入和输出联系起来.实际上就找到输出和输入的关系,完成设计任务。4。2编程软件STEP7—-Micro/WIN概述STEP7-Micro/WIN编程软件是基于Windows的应用软件,由西门子公司专为S7—200系列可编程控制器设计开发,它功能强大,主要为用户开发控制程序使用,同时也可以实时监控用户程序的执行状态。4。2。1STEP7—-Micro/WIN简单介绍以STEP7-Micro/WIN创建程序,为接通STEP7—Micro/WIN,可双击STEP7-Micro/WIN的图标,如图4—1所示,STEP7-Micro/WIN项目窗口将提供用于创建程序的工作空间.浏览条给出了多组按钮,用于访问STEP7—-Micro/WIN的不同编程特性。指令树将显示用于创建控制程序的所有项目对象指令。程序编辑器包括程序逻辑和局部变量表,可在其中分配临时局部变量的符号名。子程序和中断程序在程序编辑器窗口的的底部按标签显示。图4-1STEP7—-Micro/WIN项目窗口本项目中我们利用STEP7--Micro/WINV4.0SP5编程软件,其界面如图4—1所示.项目包括的基本组件:程序块、数据块、系统块、符号表、状态表、交叉引用表。4.2。2计算机与PLC的通信在STEP7—Micro/WIN中双击指令树中的“通信”图标,或执行菜单命令的“查看”/“组件"/“通信”,将出现“通信”对话框,见图4-2。在将新的设置下载到S7-200之前,应设置远程站的地址,是它与S7—200的地址。双击“通信”对话框中“双击刷新”旁边的蓝色箭头组成的图标,编程软件将会自动搜索连接在网络上的S7-200,并用图标显示搜索到的S7—200。图4-2PLC通信窗口4.3程序设计4。3。1程序设计思路PLC运行时,通过特殊继电器SM0.0产生初始化脉冲进行初始化,将温度设定值,PID参数值等存入数据寄存器,随后系统开始温度采样,采样周期是17秒,TT1(出口水温温度传感器)将采集到的出口水温度信号转换为电流信号,电流信号在通过AIW0进入PLC,作为主回路的反馈值,经过主控制器(PID0)的PI运算产生输出信号,作为副回路的给定值。TT2(炉膛水温传感器)将采集到的炉膛水温度信号转换为电流信号,电流信号在通过AIW2进入PLC,作为副回路的反馈值,经过副控制器(PID1)的P运算产生输出的信号,由AQW0输出,输出的4-20mA电流信号控制可控硅的导通角,从而控制电热丝的电压,完成对温度的控制。4.3.2PID指令向导编写PID控制程序时,首先要把过程变量(PV)转化为0.00—1.00之间的标准实数。PID运算结束之后,需要把回路输出(0.00-—1。00之间的标准化实数)转换为可以送给模拟量输出模块的整数。图4—3PID初始化指令如图4-3,PV_I是模拟量输入模块提供的反馈值的地址,Setpoint_R是以百分比为单位的实数给定值(SP),Output是PID控制器的INT型的输出地址。HighAlarm和LowAlarm分别是超过上限和下限的报警信号输出,ModuleErr是模拟量模块的故障输出信号。主回路PID指令向导,如图4—4图4-4主回路用0号PID回路设置PID参数,如图4-5:图4-5设置PID参数给定值的范围是0.0--100.0,比例增益Kc为—3.0,积分时间Ti=7min,因为主控制器采用PI控制,所以微分时间Td=0。2.回路输入量的极性与范围,如图4—5:图4-5输入输出量的设置PID指令的参数表占用的V存储区的起始地址如图4-6:图4-6地址设置4.向导完成,如图4-7图4-7向导完成副回路PID指令向导:副回路采用1号PID回路,如图4—8:图4-8副回路PID回路设置1.新建PID配置,如图4-9:图4-9PID配置新建2.设置PID参数,如图4-10图4-10副回路PID设置因为副回路主要起到“粗调”、“快调"的作用,所以我们采用P调节作用,比例增益Kc=-4.0,Ti无穷大,Td=0;3。副回路输入量的极性与范围,如图4—11如图4—11副回路输入输出设置4.PID指令的参数表占用的V存储区的起始地址,如图4-12:图4-12副回路存储区设置5。向导完成,如图4—13图4—13副回路向导完成4.3.3控制程序及分析因为由AIW0和AIW2输入的是6400-—32000的数字量,所以要转换为实际的温度要进行运算,运算公式为:公式(4—1)其中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论