基于PLC的风机控制系统设计2【实用文档】doc_第1页
基于PLC的风机控制系统设计2【实用文档】doc_第2页
基于PLC的风机控制系统设计2【实用文档】doc_第3页
基于PLC的风机控制系统设计2【实用文档】doc_第4页
基于PLC的风机控制系统设计2【实用文档】doc_第5页
已阅读5页,还剩151页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于PLC的风机控制系统设计2【实用文档】doc文档可直接使用可编辑,欢迎下载

摘要基于PLC的风机控制系统设计2【实用文档】doc文档可直接使用可编辑,欢迎下载可编程控制器(PLC)是一种以微处理器为核心,综合了计算机技术、自动控制技术和网络通信技术的通用工业控制装置。它具有使用方便、维护容易、可靠性好、性能价格比高等特点,广泛应用于工业控制的众多领域。煤矿主通风机是煤矿生产的重要设备,通风机能否正常工作,直接影响煤矿的生产活动。因此对主通风机实现在线监控有很重要的意义.本文针对通风机的工作环境和运行特点,以PLC为主控设备,介绍了可编程序控制器(PLC)在煤矿通风系统中的应用;探讨了通风机实现自动控制系统的系统组成和设计;涉及硬件设备的选型与组态;编制了通风机实现自动控制梯形图;并简要介绍了PLC与其他智能装置及个人计算机联网,组成的控制系统。本系统提高了主通风机设备的自动化管理水平,有力地保证了主通风机设备的经济、可靠运行,为设备的管理和维修提供了可靠的科学依据。关键词:煤矿通风机;PLC;在线控制DesignofFanControlSystemBasedonPLCAbstractThe

programmable

logic

controller(PLC)

is

microprocessor

core,

acombinationofcomputer

technology,

automaticcontroltechnology

and

networkcommunicationtechnology,

generalindustrialcontroldevices.

Ithas

easytouse,easymaintenance,reliability,highcostperformance

characteristics,

widelyusedin

many

areas

of

industrialcontrol.The

minevertilator

coal

production

equipment,

the

fan

canwork

adirectimpacton

coal

productionactivities。

Therefore,

the

main

fan

toachieve

onlinemonitoring

of

veryimportant

significance.

Inthispaper,

the

workingenvironment

andoperationalcharacteristics

of

theventilator,

the

PLCasthe

master

device

tointroduce

a

programmablelogiccontroller

(PLC)in

the

mineventilation

system;

explore

compositionand

designof

fan

system

to

achieve

automaticcontrolsystem;

involvedin

equipmentselection

andconfiguration

of

hardware;

thepreparationof

the

ventilator

toachieve

automaticcontrol

ladder;

andbrieflydescribes

the

PLCand

otherintelligentdevices

andpersonal

computers

networked

controlsystemcomposedof。Thissystem

improvesthe

ventilator

equipment

automation

managementlevel,

toensure

the

main

ventilator

equipment,

economic,

reliableoperation,

andprovidesareliable

scientificbasis

for

themanagementandmaintenance

ofequipment.Keywords:Coalmineventilator;PLC;Onlinemonitoring目录TOC\o”1-3"\h\z\uHYPERLINK\l"_Toc328035532”HYPERLINK\l”_Toc328035533"引言1第1章绪论2HYPERLINK\l”_Toc328035535"1.1课题的研究意义21.2PLC及风机控制系统的发展状况2_Toc328035541"2。4变频调速的依据6HYPERLINK\l”_Toc328035542”2.5离心风机控制原理分析6第3章系统硬件设计103。1温度传感器的选择103.2PLC的选择103.2.1FP0系列PLC的特点103。2.2PLC控制系统设计流程10HYPERLINK\l"_Toc328035548”3.3变频器的选择11HYPERLINK\l"_Toc328035549"第4章系统软件设计15HYPERLINK\l”_Toc328035550"4。1PLC程序设计154。1.1离心风机转换过程分析184.1.2系统工作状态18HYPERLINK\l"_Toc328035553"4.1.3状态转换过程的实现方法194。2程序设计的梯形图19HYPERLINK\l"_Toc328035555"第5章系统可靠性设计及调试23HYPERLINK\l”_Toc328035556"5。1系统的可靠性设计23HYPERLINK\l”_Toc328035557"5.2系统调试235.21软件系统的调试235.22硬件系统的调试23HYPERLINK\l"_Toc328035560"5.23软硬件结合调试23HYPERLINK\l"_Toc328035561"结论与展望25HYPERLINK\l"_Toc328035562”致谢26参考文献27附录A一篇引用的外文文献及其译文28HYPERLINK\l"_Toc328035565”附录B部分源程序33HYPERLINK\l”_Toc328035566"附录C:主要参考文献的题录及摘要36插图清单TOC\h\z\t"题注"\c"图表”HYPERLINK\l”_Toc328035351"图2—1自动控制系统组成框图5HYPERLINK\l"_Toc328035352"图2-2变频调速在风机中的节能分析6图2-3变频器主电路原理图7HYPERLINK\l”_Toc328035354”图2-4离心风机主电路图8图2—5离心风机控制线路图9HYPERLINK\l”_Toc328035356"图3-1KA-KM接线图10HYPERLINK\l"_Toc328035357”图3—2PLC控制系统设计流程图12图3-3PLC接线图13HYPERLINK\l"_Toc328035362"图4-2变频器接线图17HYPERLINK\l"_Toc328035364"图4—3系统总控制流程图21HYPERLINK\l"_Toc328035365"图4—4启动/停止程序21图4-5比较程序22图4-6模拟量输出程序22表格清单TOC\h\z\t"题注"\cHYPERLINK\l”_Toc328035407"表3—1I/O分配表14HYPERLINK\l"_Toc328035408"表4-1主电路端子及功能表16HYPERLINK\l”_Toc328035409”表4-2控制电路端子及功能表17HYPERLINK\l”_Toc328035411"表4-3系统工作状态表18引言在工业生产中的锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,风机设备被大量应用,但不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了,在生产过程中,不仅造成大量的能源浪费和设备损耗,而且控制精度受到限制,从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用PLC和变频器易操作、免维护、控制精度高,并可以实现高功能化等特点,采用基于PLC的变频器驱动方案开始逐步取代风门、挡板、阀门的控制方案,从而大大的降低生产成本,减少能量损耗和对环境的污染,为企业带来观的经济效益和社会效益。风机的控制系统是风机的重要组成部分,它承担着风机监控、自动调节、实现最大风能捕获以及保证良好的电网兼容性等重要任务,它主要由监控系统、主控系统、变桨控制系统以及变频系统(变频器)几部分组成。部分的主要功能如下:监控系统(SCADA):监控系统实现对全风场风机状况的监视与启、停操它包括大型监控软件及完善的通讯网络.主控系统:主控系统是风机控制系统的主体,它实现自动启动、自动调向、自动调速、自动并网、自动解列、故障自动停机、自动电缆解绕及自动记录与监控等重要控制、保护功能。它对外的三个主要接口系统就是监控系统、变桨控制系统以及变频系统(变频器),它与监控系统接口完成风机实时数据及统计数据的交换,与变桨控制系统接口完成对叶片的控制,实现最大风能捕获以及恒速运行,与变频系统(变频器)接口实现有功率以及无功功率的自动调节。变桨控制系统:与主控系统配合,通过对叶片节距角的控制,实现最大风能捕获以及恒速运行,提高了风力发电机组的运行灵活性。目前来看,变桨控制系统的叶片驱动有液压和电气两种方式,电气驱动方式中又有采用交流电机和直流电机两种不同方案。究竟采用何种方式主要取决于制造厂家多年来形成的技术路线及传统。变频系统(变频)器:与主控制系统接口,和发电机、电网连接,直接承担着保证供电品质、提高功率因素,满足电网兼容性标准等重要作用。

绪论1。1课题的研究意义在工业生产、产品加工制造业中,风机设备主要用于锅炉的燃烧系统、其他设备的烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况.而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失的形式消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗.从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下.为此,需要采用多项措施实现对离心风机的自动控制,以使系统的各种性能达到合理的要求。近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用PLC和变频器易操作、易维护、控制精度高,并可以实现高功能化等特点,采用基于PLC的变频器驱动方案开始逐步取代风门、挡板、阀门的控制方案。从而大大的降低生产成本,减少能量损耗和对环境的污染,为企业带来观的经济效益和社会效益。随着电子技术和微电子技术的迅速发展,PLC和变频器正成为通用、廉价和性能可靠的控制和驱动设备,得到广泛的应用。由PLC控制的变频调速离心风机的通风系统,具有较高的可靠性和较好的节能效果,易于组建成整体的自控系统,很方便地实现各种控制切换和远程监控,本文通过一个实例—-基于离心风机的矿井通风系统进行分析。煤矿矿井通风系统是煤矿矿井安全生产的重要组成部分,煤矿矿井通风系统能否正常工作与矿井内工作环境条件、生产效率、安全生产密切相关。随着我国政府对各行各业安全生产监管力度的不断加强,尤其对煤矿安全生产的要求越来越高,对煤矿矿井通风系统进行技术改造,提高其运行稳定性、可靠性、节能降耗等势在必行。目前煤矿矿井通风系统中,大多仍采用继电、接触器控制系统,但这种控制系统存在着体积大、机械触点多、接线复杂、可靠性低、排除故障困难等很多的缺陷,且因工作通风机一直高速运行,备用通风停止,不能轮休工作,易使工作通风机产生故障,降低使用寿命.针对这一系列问题本系统将PLC与变频器有机地结合起来,采用以矿井气压压力为主控参数,实现对电动机工作过程和运转速度的有效控制使矿井中用的离心通风机通风高效、安全,达到了明显的节能效果。PLC控制系统具有对驱动风机的电机过热保护、故障报警、机械故障报警和瓦斯浓度断电等功能特点,为煤矿矿井通风系统的节能技术改造提供一条新途经。1.2PLC及风机控制系统的发展状况经过几十年的迅速发展,PLC的功能越来越强大,应用范围也越来越广泛,其足迹已遍及国民经济的各个领域,形成了能够满足各种将需要的PLC应用系统.随着市场需求的不断提高PLC的发展体现出以下趋势。ﻭ1.向小型化、微型化和大型化、多功能两个方向发展2.过程控制功能不断增强3.大力开发智能型I/O模块4。与个人计算机日益紧密结合5.编程语言趋向标准化6.通信与联网能力不断增强近年来随着科技的飞速发展,PLC的应用正在不断地走向深入,同时带动传统的控制检测技术不断更新。PLC是采用大规模集成电路、微型计算机技术的发展成果逐步形成具有多种优点和微型、小型、中型、大型、超大型等各种规格的PLC系列产品应用于从继电器控制系统到监控计算机之间的许多控制领域,它最适用于以开关为主的控制功能.通过模拟/数字,(A/D)转换器和数字/模拟(D/A)转换器也可以控制模拟量例如控制温度、压力、流量、成分等参数。基于PLC的多路抢答器控制系统可以根据PLC修改程序方便这一特点随意调整设置的时间或者控制系统的工作状态。如果对外部电路稍加修改或者在系统程序中加入分支可以把八路抢答器变为更多路的抢答器。比如十位、十六位或者二十位等.如果将手动按钮变为触摸屏可以使抢答器更为简单方便。如果去除系统中的限时功能还可以把抢答器改为呼叫器能够在医院病房、宾馆客房、写字楼办公室、工厂生产车间等多种地方使用。风机控制系统的研究现状:风机的控制系统是风机的重要组成部分,它承担着风机监控、自动调节、实现最大风能捕获以及保证良好的电网兼容性等重要任务,它主要由监控系统、主控系统、变桨控制系统以及变频系(变频器)几部分组成.各部分的主要功能如下:监控系统(SCADA):监控系统实现对全风场风机状况的监视与启、操作它包括大型监控软件及完善的通讯网络。主控系统:主控系统是风机控制系统的主体,它实现自动启动、自动调向、自动调速、自动并网、自动解列、故障自动停机、自动电缆解绕及自动记录与监控等重要控制、保护功能。它对外的三个主要接口系统就是监控系统、变桨控制系统以及变频系统(变频器),它与监控系统接口完成风机实时数据及统计数据的交换,与变桨控制系统接口完成对叶片的控制,实现最大风能捕获以及恒速运行,与变频系统(变频器)接口实现对有功功率以及无功功率的自动调节。变桨控制系统:与主控系统配合,通过对叶片节距角的控制,实现最大风能捕获以及恒速运行,提高了风力发电机组的运行灵活性。目前来看,变桨控制系统的叶片驱动有液压和电气两种方式,电气驱动方式中又有采用交流电机和直流电机两种不同方案。究竟采用何种方式主要取决于制造厂家多年来形成的技术路线及传统。变频系统(变频)器:与主控制系统接口,和发电机、电网连接,直接承担着保证供电品质、提高功率因素,满足电网兼容性标准等重要作用。风机控制系统的发展趋势:随着国内企业所开发风机容量越来越大,风机控制技术必须不断发展才能满足这一要求,如叶片的驱动和控制技术、如更大容量的变频器开发,都是必须不断解决的新的课题,这里不进行详细阐述。当前,由于风力发电机组在我国电网中所占比例越来越大,风力发电方式的电网兼容性较差的问题也逐渐暴露出来,同时用户对不同风场、不同型号风机之间的联网要求也越来越高,这也对风机控制系统提出了新的任务。(1)采用统一和开放的协议以实现不同风场、不同厂家和型号的风机之间的方便互联。目前,风机投资用户和电网调度中心对广布于不同地域的风场之间的联网要求越来越迫切,虽然各个风机制造厂家都提供了一定的手段实现风机互连,但是由于采用的方案不同,不同厂家的风机进行互联时还是会有很多问题存在,实施起来难度较大。因此,现实不同风机之间的方便互联是一个亟待解决的重要课题.(2)需要进一步提高低电压穿越运行能力(LVRT)。风力发电机组,尤其是双馈型风机,抵抗电网电压跌落的能力本身较差.当发生电网电压跌落时,从前的做法是让风机从电网切出。当风机在电网中所占比例较小时,这种做法对电网的影响还可以忽略不计。但是,随着在网运行风机的数量越来越大,尤其是在风力发电集中的地区,如国家规划建设的六个千万千瓦风电基地,这种做法会对电网造成严重影响,甚至可能进一步扩大事故。欧洲很多国家,如德国、西班牙、丹麦等国家,早就出台了相关标准,要求在这种情况下风机能保持在网运行以支撑电网。风机具有的这种能力称为低电压穿越运行能力(LVRT),有的国家甚至要求当电网电压跌落至零时还能保持在网运行。我国也于今年8月由国家电网公司出台了《风电场接入电网技术规定》,其中规定了我国自己的低电压穿越技术要求,明确要求风电机组在并网点电压跌落至20%额定电压时能够保持并网运行625ms、当跌落发生3s内能够恢复到额定电压的90%时,风电机组保持并网运行的低电压穿越运行要求。应该说,这还只是一个初步的、相对较低的运行要求.在今后可能还会出台更为严格的上网限制措施。这些要求的实现,主要靠控制系统中变频器算法及结构的改善,当然和主控和变桨系统也有密切联系。(3)实现在功率预估条件下的风电场有功及无功功率自动控制.目前,风电机组都是运行在不调节的方式,也就是说,有多少风、发多少电,这在风电所占比例较小的情况下也没有多大问题。但是,随着风电上网电量的大幅度增加,在用电低谷段往往是风机出力最大的时段,造成电网调峰异常困难,电网频率、电压均易出现较大波动。当前,电网对这一问题已相当重视,要求开展。第二章总体方案设计2.1控制系统的要求(1)高可靠性,以适应工业现场十分恶劣和复杂的工作条件。(2)具有实时响应处理能力,以满足工业生产过程实时控制要求。(3)有丰富的可与工业现场信号相连接的工业接口,方便实现在线监控。(4)控制系统结构应能组配灵活,易于扩展。(5)有先进的系统环境和应用软件便于开发.(6)有自动/手动转换系统,保证在自动控制系统出现故障时,可以手动控制。(7)有可靠的报警系统,在风机电机过热,变频器出现故障时能及时发出报警信号。2.2系统构成及工作原理工业离心风机的工作要求是指在特定的工作环境中,风机输出的风量要随着外界条件的变化,保持在设定的参数值上。这样,既可满足工作要求,又不使电动机空转,而造成电能的浪费。为实现上述目标,本系统采用闭环控制的方式.工业现场的温度由温度传感器检测,变换成模拟输入反馈信号,经A/D转换后与PLC中给定值比较,再经D/A转换变成模拟量输出信号,控制变频器调节风机转速,从而达到控制工厂车间温度的目的系统组成简图如图2—1所示。图2—1自动控制系统组成框图2.3变频调速节能分变频调速应用于风机系统电机的自动控制中,其节能效果明显。由流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2,P∝n3,即流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。图2给出了风机中风门调节和变频调速两种控制方式下风路的压力—风量(H—Q)关系及功率-风量(P-Q)关系.其中,曲线1是风机在额定转速下的H—Q曲线,曲线2是风机在某一较低速度下的H—Q曲线,曲线3是风门开度最大时的H-Q曲线,曲线4是风机在某一较小开度下的H—Q曲线。可以看出,当实际工况风量由Q1下降到Q2时,如果在风机以额定转速运转的条件下调节风门开度,则工况点沿曲线1由A点移到B点;如果在风门开度最大的条件下用变频器调节风机的转速,则工况点沿曲线3由A点移到C点。显然,B点与C点的风量相同,但C点的压力要比B点压力小得多.因此,风机在变频调速运行方式下,风机转速可大大降低,节能效果明显。曲线5为变频控制方式下的P-Q曲线,曲线6为风门调节方式下的P—Q曲线.可以看出,在相同的风量下,变频控制方式比风门调节方式能耗更小,二者之差可由下述经验公式(2—l)表示:(2-1)(l)其中Q为风机运行时实际风量.Qe为风门开度为最大,且电机运行在额定转速时的风量。Pe为风门开度为最大,且电机运行在额定转速时的功率。通过以上分析得出,采用转速进行调节风量,比起用挡板调节风量节省能源,风量调节幅度越大,节电效果越高。对我国风机现有的运行状况进行调查后得出,其中大多数风机处于大马拉小车的状态,用挡板进行运行流量的调节,极大的浪费了电能,若采用调速方式运行,则可以大量节约电能,并能在1至2年内收回投资成本.图2-2变频调速在风机中的节能分析2.4变频调速的依据变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系,如公式(2-2)所示:(2-2)其中n表示电机转速;f为电动机工作电源频率;s为电机转差率;p为电机磁极对数。通过改变电动机工作电源频率达到改变电机转速的目的。交流电动机调速方法有三种,主要有:(1)变极对数调速,(2)变转差率调速,(3)变频调速,即改变电源的频率来改变电机的转速。这三种方法前两种有一定的局限性,而变频调速具有其他调速方法无可比拟的优势,变频调速的性能和经济指标己赶上直流调速系统.变频调速传动效率高,因变频调速属于电气调速,无中间机械设备,也就没有附加的转差损耗,属于低损耗的高效调速,而且其调速范围广,反应速度快,精度高,装置安全可靠,安装调试方便,容易实现闭环控制,能达到自动调节.另外,使用变频调速还具有高效节能的效果。目前,变频调速控制器作为一种新型的节能控制装置,已开始在各行各业逐渐得到推广和应用。变频系统的主电路原理图如图2-3所示。图2—3变频器主电路原理图2.5离心风机控制原理分析三台大容量的离心风机(1#,2#,3#)根据工作状态的不同,具有变频、工频两种运行方式,因此每台离心风机均要求通过两个接触器分别与工频电源和变频电源输出相联。QS1,QS2,QS3,QS4分别为主电路、变频器和各电机的工频运行控制开关,KM1,KM2,KM3为三台风机工频运行时的交流接触器,KM4,KM5,KM6为三台风机变频运行时的交流接触器,FR1,FR2,FR3为工频和变频运行时的电机过载保护用热继电器,变频运行时由变频器也可实现电机过载保护。变频器的主电路输出端子(U,V,W)经接触器接至三相电动机上,当旋转方向与工频时电机转向不一致时,需要调换输出端子(U,V,W)的相序,否则无法工作.主电路见图2-4所示。在控制电路的设计中,必须要考虑弱电和强电之间的隔离问题.为了保护PLC设备,PLC输出端口并不是直接和交流接触器连接,而是在PLC输出端口和交流接触器之间引入中间继电器,通过中间继电器控制接触器线圈的得电/失电,进而控制电机或者阀门的动作。通过隔离,可延长系统的使用寿命,增强系统工作的可靠性。控制电路之中还要考虑电路之间互锁的关系,这对于变频器安全运行十分重要。变频器的输出端严禁和工频电源相连,也就是说不允许一台电机同时接到工频电源和变频电源的情况出现.因此,在控制电路中,对各风机电机的工频/变频运行接触器作了互锁设计;另外,变频器是按单台电机容量配置,不允许同时带多台电机运行,为此对各电机的变频运行也作了互锁设计.为提高互锁的可靠性,在PLC控制程序设计时,进一步通过PLC内部的软继电器来做互锁。出于可靠性及检修方面的考虑,设计了手动/自动转换控制电路。通过转换开关及相应的电路来实现。电气控制线路图见图2—5所示。图2—5中,SA为手动/自动转换开关,KA为手动/自动转换用中间继电器,打在①位置为手动状态,打在②位置KA吸合,为自动状态。在手动状态,通过按钮SB1-SB12控制各台风机的起停。在自动状态时,系统执行PLC的控制程序,自动控制风机的起停.中间继电器KA的6个常闭触点串接在三台风机的手动控制电路上,控制三台风机的手动运行。中间继电器KA的常开触点接PLC的X0,控制自动变频运行程序的执行。在自动状态时,三台风机在PLC的控制下能够有序而平稳地切换、运行。风机电机电源的通断,由中间继电器KA1-KA6控制接触器KM1-KM6的线圈来实现。HL0为自动运行指示灯。FR1,FR2,FR3为三台风机的热继电器的常闭触点,对电机进行过流保护。图2-4离心风机主电路图图2—5离心风机控制线路图第3章系统硬件设计3.1温度传感器选择本系统是将传感器安装在工厂车间中,通过实时检测车间内的温度,换算出与设定温度之间的调整值,通过变频器自动调节到合适的风机转速,从而使车间内温度达到设定的温度值。中间继电器KA1-KA6控制接触器KM1-KM6的接线图如图3—1所示。图3—1KA—KM接线图根据本系统的具体情况,经认真比较最后选定热电偶传感器,它是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精确度;测量范围广,可从-50℃~1600℃进行3.2PLC的选择对于主控设备PLC的选择,从收集的国内外各种PLC产品的资料来看,充分考虑了工业离心风机工作状况和本控制系统的特点以及现有条件,最终选择了日本松下电工FP0系列PLC产品。FP0系列PLC的特点FP0系列PLC在小机壳内汇聚了先进的功能和优异的表现,包括脉冲捕捉,两路脉冲输出,PID,PWM,高速计数,网络通信,模拟量设定和时钟功能等。主机单元是集成了CPU,电源(AC),输入输出单元的独立模块,可单独使用,也可以和扩展单元任意组合使用,最多可配置3个扩展模块。I/O点可以从最少的10点扩展到最多的128点。使用时可根据实际情况进行适当的组合。主机和扩展单元都有专门的扩展接口,在扩展时可以直接连接,不需要连接电缆。本设计根据需要,主模块选用FP0C32,扩展模块选用FP0E16,A/D转换模块采用FP0—A80模块。3.2.2PLC控制系统设计流程PLC控制系统的设计步骤如图3—2所示,在本系统的设计中,使用了一个主模块,一个扩展模块,一个A/D转换模块,共使用19个输入口,12个输出口,在I/O口的使用上,充分考虑了系统在以后扩展的需要,对一些有特殊用途的端口如A/D转换模块的接口尽量不用或者少用。为了提高系统的可靠性,在软件设计时除了编制正常工作下的自动控制程序外,还在PLC中编制了手动控制程序,这样做较之以往的控制系统有三个好处:第一,可以在系统安装完成后,对各个设备进行单个调试,以检查设备是否工作正常;第二,可以在系统自动控制程序出现错误时,用手动方式在PLC上控制系统的运行;第三,当系统工作单元如电机出了故障时,可以手动切换出现故障的电机,使之停止运行,把没有故障的电机切换入系统保证系统正常运行;正是因为有这些好处,在PLC上用了12个输入口实现对手动控制程序的支持,从而大大提高了系统可靠性.PLC模块接线图如图3-2所示,I/O分配如表3-1所示.3。3变频器的选择本系统设计选用变频器为森兰BT12S系列,变频器的连接端子图如图3-3所示。输入端R,S,T通过主电路接至电源,输出端U,V,W通过主电路接至离心风机,使用时绝对不允许接反,控制端子FWD为正转启动端,为保证电动机单向正转运行,将FWD与公共端CM相接。变频器的功能预置为:F01=5频率由X4,X5设定。F02=1使变频器处于外部FWD控制模式。F28=0使变频器的FMA输出功能为频率。F40=4设置电动机极数为4极.FMA为模拟信号输出端,可在FMA和GND两端之间跨接频率表,用于监视变频器的运行频率。F69=0选择X4,X5端子功能,即用于控制端子的通断实现变频器的升降速。X5与公共端CM接通时,频率上升;X5与公共端CM断开时,频率保持。X4与公共端CM接通时,频率下降;X4与公共端CM断开时,频率保持。本系统中使用S1和S2两个按钮分别与X4和X5相接,按下按钮S2使X5与公共端CM接通,控制频率上升;松开按钮S2,X5与公共端CM断开,频率保持。同样,按下按钮S1使X4与公共端CM接通,控制频率下降;松开按钮S1,X4与公共端CM断开,频率保持。VRF,Y1接至PLC,接收和发送与PLC主机之间的控制信号。变频器频率参数设置为:(1)最高频率:风机属于平方转矩负载,转矩T与转速的平方成正比当转速超过其额定转速时,转矩将按平方规律增加,导致电动机严重过载。因此,变频器的最高频率只能与电动机额定频率相等。本系统中最高输频率设定为50Hz.图3-2PLC控制系统设计流程图图3-3PLC接线图表3—1I/O分配表X0系统启动Y0电源指示灯X1系统停止Y1温度过高指示灯X2变频器信号输入Y2接变频器VRF端X3温度传感器1信号输入Y4变频器报警X4温度传感器2信号输入Y5电机线圈过热报警X5热电偶传感器信号输入YA1#风机工频运转X6连接上位机YB1#风机变频运转X81#风机工频选择YC备用系统X91#风机变频选择YE2#风机工频运转XA1#风机启动YF2#风机变频运转XB1#风机停止Y223#风机工频运转XC2#风机工频选择Y233#风机变频运转XD2#风机变频选择XE2#风机启动XF2#风机停止X203#风机工频选择X213#风机变频选择X223#风机启动X233#风机停止上限频率:由于变频器内部具有转差补偿功能,在50HZ的情况下电动机在变频运行时的实际转速要高于工频运行时的转速,从而增大了电动机的负载,因此实际预置的频率应略低于额定频率。本系统中上限频率设定为49。5HZ。下限频率:在风机系统中,转速过低,会出现电机的全扬程小于基本扬程(实际扬程),形成电机“空转”的现象。所以,在多数情况下,下限频率不能太低,可根据实际情况适当调整。本系中下限频率设定为35HZ。(4)启动频率:风机在启动时,存在一定的阻力,在从0HZ开始启动的一段频率内,实际上转不起来.因此,应适当预置启动频率值,使其在启动瞬间有一定的冲击力。本系统中启动频率设定为10HZ。第4章系统软件设计软件设计可包括以下几部分:初始化,风机的启动/停止,信号显示,模拟量输入,测量值与设定值的比较,模拟量输出等。4。1PLC程序设计风机控制系统可以实现的主要功能有自动变频恒温运行、自动工频运行、远程手动控制和现场手动控制。全自动变频恒温运行方式是系统中最主要的运行方式,也是系统的主要功能,是指利用PLC控制,通过变频调速自动调节车间内的温度,其核心是根据恒温条件下风机系统中电机运行的状态及转换过程中设计的PLC控制程序;自动工频运行是指在变频器故障状态下,为维持温度的相对恒定,系统根据温度高低自动调节工频运行的电机台数,这种运行方式只是在特殊情况下的一种备用方案,目的是提高系统可靠性的冗余度;远程手动控制是指在控制室,通过计算机和PLC通信远程操控风机电机的运行,是一种辅助方案;现场手动控制运行是指通过现场按钮,人工控制电机工频、变频运行,这一方式完全通过电气控制线路来实现,PLC不参与,主要用于检修、调试及PLC故障时的运行。PLC控制程序设计的主要任务是接收来自温度传感器的信号,判断当前的温度状态,通过程序处理,输出信号去控制变频器、继电器、接触器、信号灯等电器的动作,进而调整风机的运行,从而达到控制车间内温度的目的。主电路端子及功能表如表4-1所示,控制电路端子及功能表如表4-2所示。变频器接线图如图4-2所示。图4-1变频器连接端子图,表4-1主电路端子及功能表端子符号端子名称功能说明R,S,T交流电源输入端子连接三相交流电源U,V,W变频器输出端子连接三相电动机P1,P+直流电抗器连接端子改善功率因数和抗干扰P+,DB外部制动电阻器连接端子连接外部制动电阻P+,N制动单元连接端子连接外部制动单元PE变频器接地端子变频器机壳接地表4-2控制电路端子及功能表端子符号端子名称功能说明5V电位器电源DC稳压电源(最大输出电流:10mA)VRF电压输入DC0~5V或DC0~10V,输入电阻10KΩIRF电流输入DC4~20mA输入电阻240ΩGND接地端子5V,VRF,IRF,与FMA的公共端FWD正转运行设定FWD-CM接通,正转;断开,减速停止REV反转运行设定REV—CM接通,反转;断开,减速停止THR外部故障报警设定THR—CM断开,产生外部报警信号,变频器立即关断输出RESET复位RESET—CM接通,变频器复位FMA模拟量输出模拟信号输出(0~20mA,0~10V)30A,30B,30C故障输出变频器故障输出,常开30A,30B闭合,常闭30B,30C断开X1,X2,X3多极转速选择X1,X2,X3的ON/OFF组合能选择不同频率X4,X5加减速时间选择X4,X5的ON/OFF组合能选择不同的加减速时间CM公共端控制输入端及运行状态输出端的公共端图4-2变频器接线图4。1.1离心风机转换过程分析启动自动变频运行方式时,首先启动1#风机变频运行,当温度达到要求时,保持该频率,如果达到上限频率温度仍达不到设定要求,则延时10s后,PLC给出控制信号,切换1#风机工频运行,2#风机变频运行.在2#风机变频运行过程中,变频器根据温度的变化通过PID调节器调整1#风机电动机的转速来控制风量,使温度达到设定值。若温度仍然达不到设定值,则由PLC给出控制信号,将2#风机与变频器断开,转为工频恒速运行,同时3#风机变频运行.系统工作于1#风机工频运行、2#风机工频运行、3#风机变频运行的状态。若温度仍高于设定值,3台风机同时工频运行也不能满足要求时,将启动备用系统,直到满足温度要求。整个转换过程中,总是保证原来工作于变频运行状态的风机转入工频恒速运行,新开风机运行在变频状态,保证只有一台风机运行在变频状态。当外界温度降低时,变频器通过PID调节器降低风机电机转速来调节风量.并按“先起先停”的原则,由PLC给出控制信号,将当前最先工作在工频方式的风机关闭,同时PID调节器将根据调整值自动升高变频器输出频率,加大风量,维持温度的恒定。当温度继续降低时,系统继续按“先起先停“原则逐台关闭处于工频运行的风机.当系统处于单台风机变频运行状态时,如变频器输出频率达到下限频率,温度低于设定值时,则关闭变频器运行,此时三台风机都已关停,系统通过温度传感器时时检测车间内温度值,一旦温度高于设定值,则启动风机进行温度调节。4.1。2系统工作状态工作状态之间的转换条件是依据变频器输出频率是否到达极限频率及温度是否达到设定值。设变频器输出频率达到极限频率时的信号为X1,实际温度高于设定温度值的信号为X2,实际温度达到设定温度值的信号为X3实际温度低于设定温度值的信号为X4.从停机到开启1#风机的条件为:满足X2;保持现有工作状态的条件为:满足X3;增开风机条件:同时满足X1,X2;减开风机条件:同时满足X1,X4;系统工作状态如表4-3所示:表4—3系统工作状态表状态符号工作状态S0停机状态,传感器检测.S201#风机变频运行,2#,3#风机停机。S211#风机工频运行,2#风机变频运行,3#风机停机。S221#风机工频运行,2#风机工频运行,3#风机变频运行。S233台风机全部工频运行,备用系统启动.S24关闭备用系统,3#风机变频运行。S25关闭1#风机,2#风机工频运行,3#风机变频运行。S26关闭2#风机,3#风机变频运行。S27关闭3#风机,传感器检测。S28系统异常,出现故障。4。1。3状态转换过程的实现方法从传感器检测状态到开启1#风机,只需用变频器以起始频率起动1#风机电机运行即可;减开风机过程是在满足减开风机条件的前提下,通过PLC控制,断开工频运行状态电机的接触器主触点即可。以一号风机为例启动控制流程图如图4—3。增开风机过程的实现相对复杂一些,首先要将运行在变频状态的电机和变频器脱离后,再切换到电网运行,同时变频器又要以起始频率起动一台新的电机运行.切换过程主要考虑三方面的问题:切换过程的可靠性。决不允许出现变频器的输出端和工频电源接连的情况,这一点通过控制电路、PLC内部软继电器的互锁及PLC控制程序中动作的时间先后次序来保证。切换过程的完成时间。时间太长,原变频运行的电机转速下降太多,一方面造成温度升高快,另一方面在接下来切换到工频时冲击电流时间太短,切换过程的可靠性下降。具体时间还需根据电动机的容量大小来设定,容量越大,时间越长,一般情况下,500ms足够。切换过程的电流。因变频器输出电压相位和电网电压相位一般不同,当电机从变频器断开后,转子电流磁场在定于绕组中的感应电压与电网电压往往也存在相位差。此时,切换到工频电网瞬间,如果二者刚好反相,则将产生比直接起动时的起动电流更大的冲击电流,反过来对变频器造成冲击。解决办法有:电机定子绕组中接入三相灭磁电阻的方法。这种方法一般需要延时2~3秒,时间太长,风机转速下降太多,不合适。相位鉴定法.通过相位鉴别电路,在电网电压和变频器输出电压相位一致时,快速切换。这种方法十分有效、可靠,对于100kW以上的大容量电机一般要求采用这一方法。(3)利用变频器的自由停车指令BX来实现的快速灭磁法。这一方法的实质是通过定子绕组中和变频器逆变桥上的续流二极管组成的回路来达到快速灭磁的目的。其动作顺序是,在电机从变频器断开前,PLC的Y2给出动作信号,变频器VRF端子功能生效,自由停车命令BX生效,变频器立即停止输出,经短暂延时(约500ms)灭磁后,将电机从变频器断开,并立即投入电网。这种方法简单有效、控制方便,本次设计中采用了这一方法。本控制系统的主程序流程图如图4—4所示。4.2程序设计的梯形图(1)启动/停止程序启动/停止程序主要控制系统的启动和停止,按下启动按钮时自动控制系统开始运行,按下停止按钮自动控制系统停止运行。程序梯形图见图4-5所示。(2)模拟量输入程序由于本控制系统采用两个温度传感器测量车间内不同两点的温度信号,所以要分别读两次模拟量值。按系统要求,模拟量输入与比较采取以下程序设计方法,程序梯形图见图4-5所示。(3)比较程序将温度传感器的两次测量值的平均值分别与前次测量值进行滤波,然后取平均值与设定值比较,与设定值不等则进行PID调节控制,此程序梯图如图4-5所示。(4)模拟量输出程序把通过比较计算的输出模拟量,输送到变频器中,从而调节风机的转速,此程序梯形图如图4-6所示。图4-3系统总控制流程图图4-4启动/停止程序图4—5比较程序图4-6模拟量输出程序第5章系统可靠性设计及调试5。1系统的可靠性设计系统中采用的工控设备变频器和PLC均具有抗干抗能力强,可靠性好的特点.但作为一个完整的系统,应用于工业现场,还是有必要考虑加强抗干扰措施,保证运行的稳定性。(1)变频器和PLC应安装于专门的控制柜中,但一定要保证良好的通风环境和散热,PLC四周留有50mm以上的净空间.环境温度最好控制在45℃以下,相对湿度在5~90%,尽量不要安装在多尘、有油烟、有导电灰尘、有腐蚀性气体、振动、热源或潮湿的地方。(2)控制柜和风机现场距离不要太远,尤其是信号传输电缆要尽可短,而且要尽量远离那些会产生电磁干扰的装置。(3)外围设备信号线、控制信号线和动力线应分开敷设,不能扎在一起,应采用屏蔽线且屏蔽层接地。(4)变频器和PLC均要可靠接地。接地电阻要小,接地线须尽可能短和粗,并且应连接于专用接地极或公用接地极上,不要使用变频器、PLC外壳或侧板上的螺钉作为接地端。而且二者在接地时,应尽量分开,不要用同一接地线。(5)电动机在低速运行时,电机冷却效果下降,应保证电动机具有良好的通风条件.(6)在电气设计和软件设计中,充分考虑电气设备之间的互锁关系。(7)选用性能可靠的继电器、接触器对于系统的可靠运行也具有十重要的意义.(8)要考虑防雷设计。如电源是架空进线,在进线处装设变频器专用避雷器,或按规范要求在离变频器20m远处预埋钢管做专用接地保护。如果电源是电缆引入,则应做好控制室的防雷系统,以防雷电窜入破坏设备。5.2系统调试5.21软件系统的调试软件系统的调试主要是PLC程序的调试,包括错误的校验,逻辑性分析,控制要求的合理性和正确性.5.22硬件系统的调试硬件系统的调试主要是各个装置的调试,包括PLC,变频器,传感器,继电器等电气装置的安装,连线,初始化设置等,检查其是否存在断线,连线,错线以及设置错误。5.23软硬件结合调试软硬件结合调试是系统调试中的最后一个步骤,实际上就是在装备正式投入运行前的功能测试和安全性测试,这是最容易出现问题的一步,往往在单独进行硬件和软件调试时系统运行正常,但一旦结合起来,就会现各种各样的问题,需要考虑多方面的因素才可以解决。软硬件结合调试的主要内容包括:PLC程序运行控制硬件是否达到预定要求,在非正常情况下是否有报警提示和相应的安全措施,系统的抗干扰措施是否达到效果。这一阶段的调试可分为以下几部分:(1)系统的启动/停止调试。(2)系统的自动/手动转换调试。(3)PLC控制系统现场调试。(4)系统工作过程调试.(5)在线监控调试。(6)报警系统调试。(7)系统安全性能调试。结论与展望利用PLC来控制变频器实现离心风机变频调速自动控制是完全可行的。采用本控制系统可以根据风机现场的实际情况,按照当时温度要求实时地调节风机叶轮转速,既不影响工作效果又能达到节能要求,满足了当时的要求。本系统利用PLC实现就地控制,并有自动/手动互相切换两种工作方式,既能在正常生产中实现自动控制保证工作效果,又能在突发事件(如断电自控元器件出现故障或需要检修调整自控系统且不影响生产等)出现时,切换到手动控制进行应急处理。而且系统的抗干扰能力强,能在恶劣的环境中可靠地工作,平均无故障时间长,故障修复时间短。系统控制程序可根据需要而改变,具有很好的柔性.本控制系统目前是针对工业车间内对温度的特定要求而设计的,以后可以考虑在其它的系统如除尘系统中应用。在硬件选取时也留有一定的扩展空间,目前只进行了温度测量来控制风机转速,以后还可以进行其它参数测量实现更多的自动控制.在工业实际应用中,系统可连入工业控制网络,从而实现远程上位机控制,在本系统的设计中,没有涉及此方面的具体探讨,可在以后的系统设计中,再进行认真的分析。致谢毕业设计除了针对我们理论课程掌握的同时,也是对我们大学生进行综合性实践训练的过程,是对整个专业知识的综合,可以使我们的理论知识与实践紧密的相结合,锻炼我们独立思考和解决实际问题的能力。在这次毕业设计的过程中使我学到许多以前在课本和课堂上无法学到的知识及技术能力,特别是在查找资料的过程中体会到许多的乐趣,从而丰富了自己。在设计的过程中,自己能在指导老师的提点下独立的分析问题、找出问题并解决问题,同时能够更加用心的思考每个细节,把专业知识和实际操作更好的结合起来,使自己能够自每天的学习过程中都有新的收获.我的毕业论文设计能够顺利的完成,是老师悉心指导的结果。在开始的时候,老师给了我整个制作的大概框架和思路,引导我该如何去做。在我制作的过程中,每次遇到不懂或不会的地方,老师都会给我一一的讲解,使我每次都有一种茅塞顿开的感觉.老师以其严谨求实的治学态度,高度的敬业精神,兢兢业业的工作作风和大胆创新的进取精神对我产生重要的影响。在此我向老师表示感谢。这次的毕业设计我可以顺利如期的完成,使我有了很大的信心,让我了解专业知识的同时也对本专业的发展前景充满信心,我在本次设计中取得的点滴进步都是来自于你们各方面的帮助和指导,感谢大家!作者:2012年06月13日参考文献[1]史正勇。基于变频调速及PLC的风机控制系统的研究[D]。北京:北京科技大学机械工程学院,2005。[2]汪向华,周捍东.工业除尘风机工况自动控制系统的研制[J]。林业产业,2006,33(6):57~59.[3]杨铃.变频调速技术在离心式引风机控制中的节能分析[J].风机技术,2006(4):47~48.[4]王树.变频调速系统设计与应用[M]。北京:机械工业出版社,2005.[5]李国厚。PLC原理与应用设计[M].北京:化学工业出版社,2005.[6]王廷才,王伟.变频器原理及应用[M]。北京:机械工业出版社,205[7]蔡建军,孔鹏.基于PLC和变频调速的供暖锅炉控制系统设[J]。仪器仪表用户,2004,11(2):26~27。[8]徐健,王延年.基于PLC的高炉鼓风机控制系统的设计与实现[J].西安工程科技学院学报,2003(9)。[9]范永胜.变频器及可编程控制器在锅炉引风机上的应用[J]。机电产品开发与创新,2004,17(3):64~66.[10]富魏,陈彦,张金学,韩晓春.鼠笼式三相交流异步电动机的变调系统的研制[J].淮海工学院学报,2001,10(2):19~22.[11]汪向华.家具车间气力输送装置变频调节自动控制系统的。研究[D]。南京:南京林业大学木材工业学院,2005.[12]姚福强,高正中,孙惠民,高正商.煤矿压风机变频调速系统的设计[J]。煤矿机械,2003(12):1~3.[13]薛庆吉,高有堂。PLC对高压离心风机的控制[J].电工技术杂志,2001(9):25~26.[14]杨永林.PLC暨变频调速在凉水塔风机集群化控制上的应用[J].电工技术,2005(1):21~25。[15]张雪平.PLC在锅炉风机控制中的应用[J].微计算机信息,200521(6):42~43.[16]苏有兰,曾文波,宁常红,李彬.基于PLC焦化出焦除尘控制系统的设计[J].广西工学院学报,2005(9).[17]李全利.可编程控制器及其网络系统的综合应用技术[M]。北京:械工业出版社,2005.[18]J。Daugman.Highconfidencepersonalidentificationbyrapidvideoanalysisofiristexture[J].TheIEEE1992InternationalCarnahanConferenceonSecurityTechnology,Atlanta,USA,1992:50-60.[19]J.G.Daugman。HighconfidenceVisualRecongnitionofPersonsbyaTestofStatisticalIndependence[J].IEEETransacationsonpatternanalysisandmachineintelligence,1993,Vol。15,No22:1148-1161.附录A一篇引用的外文文献及其译文CommunicationbetweenPCandPLCdesignandapplicationV。A.Glebov,K.S.GershtentsveigandI。D.Sincethemid—80softhe20thcentury,withtheautomaticcontrol,computer,communication,networktechnologyinthedevelopmentofprogrammablelogiccontroller(PLC)hasdevelopedintoacontrolfunctionwhichprovidesalogical,processcontrol,motioncontrol,dataprocessingfunction,multi-purposecommunicationnetworkcontroller,butbecauseofitsownlimitations,thedataofsuchprocessingandhuman—computerinteraction,cannotmeettheuserhasgreatercontrolrequest.ThiscanbecombinedPLCandhoputer,tothegreatadvantageofthecomputertocompletePLCcontrolsystem.Forcontrolsystemdesign,therearemanymanufacturerscurrentlyonthemarkettoprovidecommunicationsconfigurationsoftware,butappliedtosomesmallhighcostofmonitoringsystem,sotherearestillalotofusersarestilldevelopingtheirownhigh-levellanguageusedautomaticmonitoringsystem.Inthispaper,usinghigh-levellanguagedevelopedbyVisualBasic6。0controlinterfaceandthedevelopmentofPCcommunicationsprograms。SiemensPLCisusedtoprovideafreeportcommunicationmodel,theuseoforalinstructionstoachievefreedomofcommunication。MonitoringtaskInindustrialproduction,oftenrequiredifferentprocessingspeedoftheobjectontheroaddevicesettingsandreal-timemonitoring.ThisdeviceisPLCdedicatedlanecontrolledobject,byhostcomputerandthePLCcommunicationtoachievethespeedmonitoring.PLCTimingthespeedsensordetectsthespeedofthevaluepassedtohostcomputerfordisplayandrecord;whilePCrecorded,usingamonitoringprogramtospeedsettingsdownloadedtothePLC.AccordingtovariousbrandsofPLC’scost,theplant’sI/Opoints,ancessrequirements,scanningspeed,self—diagnosisfunctionconsiderations,thesystemselectedSiemensS7-200seriesPLC.TheseriesisasmalloverallstructureofthePLC,ernalintegrationofthePPIinterfacetoprovideuserswithapowerfulcommunicationfeature,dependingontheagreementthisinterfacecancommunicatewithdifferentdevicesorcompositionofthenetwork。2.CommunicationDesignInthePLCcommunicationwiththehostcomputer,PLCcanstartthecommunicationhaspriority,butgenerallydonotusethismethod,butusingcomputerdataprocessingcapa1bilityofthecharacteristicsofaprioritybywayofPC.First,handshakesignalsentbyacomputer,PLCreceived,thesignalsentbacktogrip;computerbacktoholdthesignalreceivedaftertheexchangeofdatathenextstep.Readdata,hostcomputerthroughtheserialportdatatothePLCtoissuereadcommands,PLCisreadytorespondtothedata,thenhostcomputerserialportcanbereadagain,readthedataneeded.Writedata,thehostcomputertothePLCtoissuewritecommandsanddata,PLCtoreceive.ComputertocommunicatewiththePLC,itmustfirstinitializethecommunicationport,theinitializationparametermustbethesamewiththePLCcommunicationparameters.Meanwhile,whenthecommunicationprogramwaswrittentonote:InordertoensuretheefficiencyoftheCPUtoreducePLCscancycle,communicationprogramdesignedshortaspossible.PCCommunicationProgramPCCommunicationPrograminVisualBasic6。0developmentenvironment.VBisavisual,object—orientedandevent-drivenapproachusingastructuredhigh-levegramminglanguage,canbeusedtodevelopvarioustypesofWindowsenvironmentapplications.Itisnotonlyeasytolearn,andthesystemcanbedesignedandbuiltanumberofexternalcontrolis,butMicrosofthasdesignedtheMSCommcommunicationcontrolallowsVBinthedevelopmentofvisualcontrolsystemhasitsuniqueadvantages.Inthecommunicationprocess,theprogrammerusingthiscontrol,simplyset,monitorMSCommcontrolpropertiesandeventspletetheinitializationoftheserialportanddatainputandoutputwork.3。1HumanMachineInterfaceForapracticalapplicationofthePLCcontrolsystemisconcerned,inadditiontohardwareandcontrolsoftware,itshouldhaveaconvenientuser-friendlyhuman—machineinterface。Userscaninterfacewiththecomputermachine,PLCtoexchangeinformation,tothePLCcontrolsysteminputdata,informationandcontmands,andPLCcontrolsystemcanalsoman—machineinterfacethroughthecomputercontrolsystemtosendbackdataandrelatedinformation。Friendlyinterface,beautifulandeasytounderstandrequirements,simpleoperation,withtheguidingfunctionandcontrolequipmentcanreproducethestateoftherealandaccuratecollectionofdatarequiredparameters.Inlinewiththeprinciplesofhuman-computerinterfacedesign,usingVB6.0sourcecodecontrolcombinationsandmonitoringsystemforanumberofinterfaces。Withthiscontrolinterface,canberemotecontrolledobjectfromthestopcontrolandrealizethecommunicationparametersset,inverterparametersettings,speed,real-timequeries,andhistoricaldatastoragecapabilities.3。2CommunicationporttosenddataHostcomputer'sdatatransmissioninclude:(1)Trafficcontrolcommandsfromthestop.Presstheuserinterfaceontheforwardandbackwardandstopbutton,theClickeventtriggertoopencommunicationintheclickeventofmouth,sendingthecharactershasaspecificmeaning。PLCreceivedcharacter,theimplementationofappropriateaction.(2)Real-timequeryspeedcommand.ArrangementsintheformtimercontrolTimer,whentheregulartimethattheimplementationofthetimereventTimer(),time2secondstosendthespeedofquerycommandPLC,PLCtoreadthespeedofaparticularstorageunitvalue,uploadedtotheinterfaceThetextboxusedtoreceivedatatoshowthespeedvalue。4.PLCProgrammingSiemensPLCS7-200serieshasavarietyofcommunicationprotocols,includingPPIprotocol,MPIprotocolagreementwiththeS7isacompanywithintheagreement,notpublic,butSiemensprovidesafreeportcommunicationmode.FreeportmodeallowsapplicationcontrolS7—200PLC'sserialportusingacustomcommunicationprotocolwithmultipletypesofsmartdevicescommunicate,thatinthefreeportmodel,S7-200PLCisinRUNmode,theusercanfreelyIsend/receiveordersorsendandreceiveinterruptinstructioncombinedwiththepreparationofcustomprocesscontrolcommunicationprotocolcommunicationportoperations。Thesystemusedthisfreeportmode,thiscontrolsystemconfigurationcanbemoreflexibleandconvenient.PLCcommunicationprogram,includingthemainprogram,initializationroutines,checksubroutine,subroutines,andreceivesreadandwritedatatocomplete,sendthecompleteinterruptionprocedure.PLCtoachievethemainprogramwhichistoreceiveandsendfunctionsofthemainframe.Initializationsubroutineisusedtosetfreepomunicationparameters.Subroutineusesadifferentverificationorvalidationcode,inordertopreventthedatasignaltransmissionerrors,thedatabeforeitissentandreceivedmustbeusedaftertheXORwillverifyit.PLCtoreadandwritedatainthesubroutineusedtosendthedatatoPChostcomputerandwritedatafromthePLC.Receivecompleterruptprogramwillrestorethedatareceivedand

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论