版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上的函数满足,则()A.-1B.0C.1D.22.设点,,不共线,则“”是“”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.设复数满足,在复平面内对应的点的坐标为则()A.C.B.D.4.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为()A.B.C.D.5.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A.B.C.D.6.函数的部分图像大致为()A.C.B.D.7.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72B.64C.48D.328.函数的部分图象如图所示,已知,函数的图象可由图象向右平移个单位长度而得到,则函数的解析式为()A.B.C.D.9.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为()A.B.C.D.10.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A.B.C.D.11.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A.,B.存在点,使得平面平面C.平面D.三棱锥的体积为定值12.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是(A.小明B.小红C.小金D.小金或小明)二、填空题:本题共4小题,每小题5分,共20分。13.若复数(是虚数单位),则________14.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是__________.15.在直角三角形中,为直角,,点在线段上,且,若,则的正切值为_____.16.图(1)是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中,则的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.18.(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.,若可能用到的参考数据:取,.19.(12分)如图,在三棱柱,中,已知四边形的角平分线为矩形,于.,,交(1)求证:平面平面;(2)求二面角的余弦值.20.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.21.(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:(2)若平面;,求二面角的余弦值.22.(10分)如图所示,四棱柱中,底面,为梯形,,,,,.(1)求证:(2)若平面参考答案;平面,求二面角的余弦值.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】推导出,由此能求出【详解】的值.满足定义在上的函数,,故选C.【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.2.C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.3.B【解析】根据共轭复数定义及复数模的求法,代入化简即可求解.【详解】在复平面内对应的点的坐标为,,则,,代入可得,解得.故选:B.【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.4.C【解析】设的中点为平面,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,因此有,连接平面,因此有,所以动点的轨迹平面,而,而与正方体平面的内切球,的交线.正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.5.B【解析】根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,此三棱锥的外接球即为长方体且球半径为的外接球,,三棱锥外接球表面积为,当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B.【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.6.A【解析】根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为所以,的定义域为,则,为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.【点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.7.B【解析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为【点睛】,故选B。本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。8.A【解析】由图根据三角函数图像的对称性可得,即可求出,利用周期公式可得,再根据图像过,再利用三角函数的平移变换即可求解.【详解】由图像可知,即,所以又,解得,,所以所以,由,或,,又,所以,,所以即,,因为函数所以的图象由图象向右平移个单位长度而得到,.故选:A【点睛】本题考查了由图像求三角函数的解析式、三角函数图像的平移伸缩变换,需掌握三角形函数的平移伸缩变换原则,属于基础题.9.A【解析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,四面体所有棱长都是4,正方体的棱长为,设球的半径为,则,解得,所以,故选:A.【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题.10.C【解析】由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】每次生成一个实数小于1的概率为.这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.11.B【解析】根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥值,故D正确;以三角形为底,则高和底面积都为定值,即三棱锥的体积为定故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.12.B【解析】将三个人制作的所有情况列举出来,再一一论证.【详解】依题意,三个人制作的所有情况如下所示:123456鸿福齐天国富民强兴国之路小明小红小金小明小金小红小红小金小明小红小明小金小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选:B.【点睛】本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】直接根据复数的代数形式四则运算法则计算即可.【详解】,.【点睛】本题主要考查复数的代数形式四则运算法则的应用.14.18【解析】根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,故可根据其中三个个体的编号求出另一个个体的编号.【详解】解:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,已知其中三个个体的编号为5,31,44,故还有一个抽取的个体的编号为18,故答案为:18【点睛】本题主要考查系统抽样的定义和方法,属于简单题.15.3【解析】在直角三角形中设正切公式求解.,,,利用两角差的【详解】设则,,,故.故答案为:3【点睛】此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.16.【解析】先求出向量【详解】如图,过点和,夹角的余弦值,再由公式即得.作的平行线交于点,那么向量,和夹角为,,,且是直角三角形,,同理得,,.故答案为:【点睛】本题主要考查平面向量数量积,解题关键是找到向量和的夹角.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)(Ⅱ)..【解析】详解:(Ⅰ)当时,由,解得;当当时,不成立;,解得时,由.所以不等式(Ⅱ)因为所以的解集为.,.由题意知对即,,,因为,所以,解得.【点睛】绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:绝对值定义法;平方法;零点区域法.不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:为参数)恒成立为参数)恒成立.18.(1)60%;(2)(i)0.12(ii)【解析】(1)利用上线人数除以总人数求解;(2)(i)利用二项分布求解;(ii)甲、乙两市上线人数分别记为X,Y,得.,利用期望公式列不等式求解,【详解】(1)估计本科上线率为.(2)(i)记“恰有8名学生达到本科线”为事件A,由图可知,甲市每个考生本科上线的概率为0.6,则.(ii)甲、乙两市2020届高考本科上线人数分别记为X,Y,依题意,可得,.因为2020届高考本科上线人数乙市的均值不低于甲市,所以,即,解得,又,故p的取值范围为.【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.19.(1)见解析;(2)【解析】(1)过点作交于,连接,设,连接,由角平分线的性质,正方形的性质,三角形的全等,证得,,由线面垂直的判断定理证得平面,再由面面垂直的判断得证.(2)平面几何知识和线面的关系可证得平面,建立空间直角坐标系,求得两个平面的法向量,根据二面角的向量计算公式可求得其值.【详解】(1)如图,过点作,交于,连接,设,连接,又,,又为的角平分线,四边形,为正方形,,又,,,为的中点,又又平面,,平面,平面,平面平面,(2)在中,,,,,在中,,又又,,,,,,平面,,,平面,故建立如图空间直角坐标系,,则,,,,设平面令的一个法向量为,则,,,得,设平面的一个法向量为,则,,令,得,由图示可知二面角故二面角是锐角,的余弦值为.【点睛】本题考查空间的面面垂直关系的证明,二面角的计算,在证明垂直关系时,注意运用平面几何中的等腰三角形的“三线合一”,勾股定理、菱形的对角线互相垂直,属于基础题.20.(1)(2)直线过定点,该定点的坐标为.【解析】(1)因为椭圆过点,所以,设为坐标原点,因为,所以,又,所以,将联立解得(负值舍去),所以椭圆的标准方程为.(2)由(1)可知,设,.将则代入,消去可得,,,,所以,所以,此时,所以,此时直线的方程为,即,令,可得,所以直线过定点,该定点的坐标为.21.(1)见解析(2)【解析】(1)连结BM,推导出BCBB1,AA1BC,从而AA1MC,进而AA1平面BCM,AA1MB,推导出四边形AMNP是平行四边形,从而MNAP,由此能证明MN平面ABC.(2)推导出ABA1是等腰直角三角形,设AB,则AA1=2a,BM=AM=a,推导出MCBM,MCAA1,BMAA1,以M为坐标原点,MA1,MB,MC为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角A【详解】CMN的余弦值.(1)如图1,在三棱柱中,连结,因为是矩形,所以,因为,,所以,所以,又因为所以平面,,又因为,所以是中点,取中点,连结且,,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:健康中国视域下医疗、医保、医药协同发展研究
- 二零二五版房屋互换及社区活动组织服务协议3篇
- 2025年度农业用地承包经营权登记合同参考4篇
- 2025年版个人与投资公司信贷合作借款合同样本4篇
- 二零二五版木工支模与智能家居安装服务合同4篇
- 二零二五版智能家居产业股权投资及合作生产合同3篇
- 二零二五年度厨房设备节能改造与评估合同8篇
- 2025年度个人与个人草原生态补偿资金管理合同范本4篇
- 2025年新型建筑材料采购及安装施工合同3篇
- 二零二五年度品牌产品售后服务客户关系维护合同3篇
- GB/T 16895.3-2024低压电气装置第5-54部分:电气设备的选择和安装接地配置和保护导体
- 计划合同部部长述职报告范文
- 人教版高一地理必修一期末试卷
- GJB9001C质量管理体系要求-培训专题培训课件
- 《呼吸衰竭的治疗》
- 2024年度医患沟通课件
- 2024年中考政治总复习初中道德与法治知识点总结(重点标记版)
- 2024年手术室的应急预案
- 五年级上册小数除法竖式计算练习300题及答案
- 语言规划讲义
- 生活用房设施施工方案模板
评论
0/150
提交评论