基因工程技术与应用知识点(完整资料)_第1页
基因工程技术与应用知识点(完整资料)_第2页
基因工程技术与应用知识点(完整资料)_第3页
基因工程技术与应用知识点(完整资料)_第4页
基因工程技术与应用知识点(完整资料)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基因工程技术与应用知识点(完整资料)(可以直接使用,可编辑优秀版资料,欢迎下载)

基因工程的定义:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。基因工程技术与应用知识点(完整资料)(可以直接使用,可编辑优秀版资料,欢迎下载)基因工程的基本过程:切、接、转、增、检基因工程理论依据:a)生物的遗传物质是DNA。b)DNA的双螺旋结构和半保留复制机理.c)遗传信息的传递方式(中心法则)和三联体密码子系统的建立遗传工程:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种.包括细胞工程和基因工程等不同的技术层次。克隆。指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。限制性核酸内切酶。是一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。限制性内切酶由三个基因位点所控制:hsdR--—限制性内切酶,hsdM—--限制性甲基化酶,hsdS———控制两个系统的表达.HsdS-识别特定DNA序列,HsdM-甲基化,HsdR-限制性内切酶功能。命名法:例如Haemophilusinfluenzue)d株中分离的第三个酶:HindIII同裂酶:不同来源的限制酶具有相同的识别位点和切割位点。同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶粘性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称之。酶活性单位.在合适的温度和缓冲液中,在50μl反应体系中,1小时内完全切割1微克DNA所需的酶量为1个酶活性单位U.星活性:指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。引起星活性原因:若使用buffer不当,会有staractivity,而staractivity是指限制酶对所作用的DNA及序列失去专一性,当酶辨认切割位置的能力降低,导致相似的序列或是错误的辨认序列长度也会作用,而产生错误的结果.连杆:化学合成的8~12个核苷酸组成的寡核苷酸片段.以中线为轴两边对称,其上有一种或几种限制性核酸内切酶的识别序列,酶切后可产生一定的粘性末端,便于与具有相同粘性末端的另一DNA片段连接。底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同衔接头:化学合成的寡核苷酸,含有一种以上的限制性核酸内切酶识别序列。其一端或两端具有一种或两种内切酶切割产生的黏性末端.逆转录酶:以mRNA为模板合成其互补DNA。RNA聚合酶:以DNA为模板合成mRNA,不需引物,但必须有启动子。末端转移酶:不依赖于DNA的DNA聚合酶,来自于小牛胸腺组织,在DNA分子的3端增加一个或多个脱氧核苷酸。多核苷酸激酶:对核酸末端羟基进行磷酸化的酶。防止载体分子的自身环化作用:使用不同的限制酶切;碱性磷酸酶预先处理质粒载体;DNA片段5’端脱磷酸化作用后连接。;DNA片段末端同聚物加尾后进行连接载体:指能够运载外源DNA片段(目的基因)进入受体细胞,具有自我复制能力,使外源DNA片段在受体细胞中得到扩增和表达,不被受体细胞的酶系统所破坏的一类DNA分子。功能:1运送外源基因高效转入受体细胞2为外源基因提供复制能力或整合能力3为外源基因的扩增或表达提供条作为工程载体必备的条件:具有多个单一的限制酶切位点;有复制起点,在受体细胞中能自我复制,或整合到染色体DNA上随染色体DNA的复制而同步复制;具有筛选转化子的选择性标记基因;安全,不含对受体细胞有害的基因,不会任意转入受体细胞以外的其它生物细胞中;分子量小,拷贝数多;携带外源基因的幅度宽.克隆载体:用于在受体细胞中进行目的基因扩增的载体.一般具有较低的分子量、较高的拷贝数和松弛型复制子。表达载体。指专用于在宿主细胞中高水平表达外源蛋白质的载体,可将重组体DNA导入适合的受体细胞,使所载的目的基因能够复制、转录和翻译.穿梭载体:能在两种不同的生物体内复制的载体。主要用于原核细胞与真核细胞之间进行基因转移质粒:指独立存在于宿主细胞染色体外、能够自我复制的DNA分子.严谨型质粒:拷贝数为1至几个的质粒.松弛型质粒:拷贝数多于10个的质粒。氯霉素扩增:用氯霉素抑制蛋白质合成并阻断细菌染色体复制时,带有pMB1或ColEI复制子的质粒扔会利用丰富的原料大量复制的的现象.质粒不亲和性:指在无选择压力的情况下,两种亲缘关系密切的不同质粒不能在同一个寄主细胞中稳定共存的现象。接合质粒。指质粒所携带的基因的功能是使细胞彼此有效地接触,以便将质粒DNA从供体细胞转移至受体细胞的质粒。质粒有哪些性质:自主复制性、可扩增性、不亲和性、转移和迁移、重组性。cos位点:指在连接酶的作用下,连接黏性末端结合形成的双链DNA区段.柯斯质粒载体:是一类人工构建的含有DNAcos位点、噬菌体包装有关的DNA短序列、质粒DNA复制起点、抗生素标记基因等元件的特殊质粒载体.在宿主细胞中可以作为正常噬菌体进行复制,但不表达噬菌体的任何功能。人工染色体:指人工构建的含有天然染色体基本功能单位的载体系统。主要有酵母人工染色体(YAC,在大规模的测序中例如人类基因组计划是非常有用的还有用于高等生物构建基因组文库,缺点是:1存在嵌合现象,嵌合体比例比较高,2YAC克隆的稳定性差,插入片段存在重排和丢失现象,3插入片段的分离和纯化困难,不容易与酵母自身染色体相分离。)、细菌人工染色体(BAC)、源于噬菌体P1的人工染色体(PAC),它们的特点是载体的容载能力扩大,人工染色体具备三个元件:复制起始区/自主复制序列,参与染色体DNA复制起始结构的形成;着丝粒,负责染色体向子细胞传递;端粒,对染色体DNA两个末端起封口和保护作用。λ-DNA作为载体的优点:1)λ-DNA可在体外包装成噬菌体颗粒,能高效感染大肠杆菌;2)λ—DNA作为载体,其装载外源DNA的能力为25kb,远远大于质粒的装载量;3)重组λ-DNA的筛选较为方便,可进行正向筛选和杂交筛选;4)重组λ—DNA分子的提取比质粒容易PCR反应体系的成份:Taq酶、模板DNA、引物、dNTP、PCR缓冲液PCR反应的步骤:①DNA变性:(90℃—96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA。②退火:(60℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。③延伸:(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的3′端开始以从5′→3′端的方向延伸,合成与模板互补的DNA链。探针:具有一定序列的核苷酸片段,能与互补的核酸序列复性杂交,并且能通过适当标记进行检测。目的基因.是指已被或欲被分离、改造、扩增和表达的特定基因或DNA片段.基因文库:是某种特定的生物所含有的能够包含所有基因的足够数目的克隆的集合cDNA文库。以mRNA为模板,经反转录产生的各种cDNA片段分别与克隆载体重组,贮存在一种受体菌群体中,这样的群体称为cDNA文库。构建步骤:分离纯化总RNA及mRNA;•cDNA第一链的合成•双链cDNA合成•与载体重组、转化基因组文库:某种生物的基因组的全部遗传信息通过克隆载体贮存在一个受体菌的群体中,这个群体即为这种生物的基因组文库.探针杂交原理。任意两条单链核酸分子都有相互形成碱基对的趋势.但形成的大多数分子对由于只有少数链间氢键形成,杂交结构并不稳定.如果多聚核苷酸链是互补的,碱基对的大量形成使双链分子稳定。原位杂交技术:基本原理是利用核酸分子单链之间有互补的碱基序列,将有放射性或非放射性的外源核酸(即探针)与组织、细胞或染色体上待测DNA或RNA互补配对,结合成专一的核酸杂交分子,经一定的检测手段将待测核酸在组织、细胞或染色体上的位置显示出来。cDNA文库的构建步骤:分离纯化总RNA及mRNA(P104—110)、cDNA第一链的合成、双链cDNA合成、与载体重组、转化从基因文库中获取目的基因的方法:PCR法、化学合成法、分离目的基因的方法和原理:1从生物基因组群体中分离目的基因(原核生物基因组较小,基因容易定位,用限制性内切酶将基因组切成若干段后,用带有标记的核酸探针,从中选出目的基因.真核生物一般通过基因组文库的方法获得目的基因。)2人工合成目的基因DNA片段(人工合成目的基因DNA片段有化学合成和酶促合成法两条途径.一般是采用DNA合成仪来合成长度不是很大的DNA片段.)3PCR反应合成DNA(PCR是以DNA变性、复制的某些特性为原理设计)受体细胞选择的原则;•外源DNA分子能稳定存在,限制酶缺陷型;•重组基因缺陷型;•易于转化/转导;•易筛选•遗传稳定性高,易于扩大培养;•安全性高;•内源蛋白酶基因缺失或缺陷;•遗传密码无明显偏好性;•具有较好的转译加工机制;•较高的理论和实践应用价值。转化:以质粒为载体的重组DNA分子引入受体细胞的过程。转染:以噬菌体或病毒为载体的重组DNA分子引入受体细胞的过程。转导:是指通过λ噬菌体(病毒)颗粒感染宿主细胞的途径把外源DNA分子转移到受体细胞内的过程。感受态细胞:指处于能吸收周围环境中DNA分子的生理状态的细胞.转化率:是指DNA分子转化受体菌获得转化子的效率几种常见的转化方法:1化学转化法:•原理:0ºC、低浓度(50~100mM)CaCl2,Ca2+改变细胞膜的磷脂层结构,提高膜的通透性,而且增强进入细胞的DNA分子抗DNase的能力。特点:操作简便,不需特殊仪器,一般实验室均可进行。2电激法•原理:利用高压电脉冲作用,在细菌细胞膜上进行电穿孔,形成可逆的瞬间通道,促进外源DNA的有效吸收。•特点:感受态细胞制备简单;用途广泛,但需特殊仪器电激仪。原生质体转化、噬菌体转化。正向选择•重组子在培养基上能生长,而非重组子不能生长。根据插入序列的表型特征进行筛选:1限制性内切酶法:可以通过限制性酶酶切重组质粒,电泳分析插入片段长度是否正确。2PCR法:如果已知插入DNA片段的某些序列,就可以通过PCR的方法进行鉴定。3菌落原位杂交法:直接把菌落或噬菌斑印迹转移到杂交膜上,不必进行核酸分离纯化、限制酶酶切及凝胶电泳分离等操作,而是经溶菌和变性处理后使DNA暴露出来并与杂交膜结合,再与特异性标记探针杂交,筛选出含有插入序列的菌落或噬菌斑。4基因产物检测法:如果使用的是表达载体,那么就可以通过鉴定基因产物的方法鉴定正确的克隆.α-互补:lacZ基因上缺失近操纵基因区段的突变体lacZ’可以与带有完整的近操纵基因区段的β—半乳糖苷酶阴性突变体之间实现互补。根据载体的选择标记的初步筛选:①抗药性选择标记插入失活/插入表达筛选法(正向选择•重组子在培养基上能生长,而非重组子不能生长。)②β-半乳糖苷酶显色反应筛选法(α—互补筛选)(α—互补概念)③利用报告基因筛选植物转化细胞(通过不同报告基因产生不同的酶而采用不同的手段筛选)④利用遗传选择标记筛选哺乳动物转基因细胞外源基因表达系统:指目的基因与表达载体重组后,导入合适的受体细胞,并能在其中有效表达,产生目的基因产物。大肠杆菌基因表达载体的重要组成元件:•复制起始区(ori)•选择标记•正确插入的多克隆位点(控制有效转录、翻译调控)•启动子:Lac和Tac;PL和PR;T7•核糖体结合位点•翻译起始点AUG等真核基因在大肠杆菌中表达遇到的问题和对策:细菌不能识别真核基因的表达信号.解决的方法是将外源基因插入载体中,使其处于一系列的E.coli表达信号的控制之下。这样基因可以转录和表达.克隆载体提供了表达的信号,所以可以用来生产重组蛋白,被称为表达载体。或者:1)外源基因可能含有内元。E.coli缺乏切除内元的机制。2)外源基因可能含有在E.coli作为终止子的序列。3)基因的密码子可能不适合于E.coli中翻译。解决策略:1)如果克隆的基因含有内元,可以使用mRNA。2)定点突变的方法改变可能的终止序列。3用E。coli偏爱的密码子.融合蛋白:将外源蛋白基因与受体菌自身蛋白基因重组在一起,没有改变两个基因的阅读框,以这种形式表达的蛋白,称之.分泌型蛋白:外源基因的表达产物N端连有一信号肽序列,通过运输和分泌的方式穿过细胞的外膜进入培养基中.包涵体:一定条件下,外源基因表达产物在大肠杆菌中积累并致密地聚集在一起形成无膜的裸露结构,称为包涵体。基因表达产物的检测方法:•报告基因的酶法检测•酶联免疫吸附法•Western印迹法•表达产物生物学活性检测植物遗传转化的方法:1直接基因转移技术(基因枪法、原生质体法、脂质体法、花粉管通道法、电激转化法、PEG介导转化方法)2生物介导的转化方法(农杆菌介导和病毒介导两种转化方法),常用于双子叶植物。Ti质粒的结构植物基因工程的应用:一。利用植物转基因技术研究基因的表达与调控(可以利用报告基因研究环境因素的变化对基因表达的影响;Ti质粒上的T-DNA能随机整合入植物染色体中,因而已广泛应用于植物基因的定性及分离上.)二。利用转基因植物生产外源蛋白质(利用转基因植物作为生物反应器,生产异源蛋白质及其它高分子化合物)三.改良植物品种(可以通过转基因来控制植物果实的成熟时间,也可以培育抗虫害、抗病、坑除草剂和抗逆境的植物,还可以改变花型和花色及改良作物品质)转基因安全性:标记基因是否有害;环境危害;不同的酶对离子强度要求不同,所以当DNA同時以两种限制酶处理时,选择可使两种酶活性反应均可达75﹪以上的restrictionbuffer,若找不到适当的buffer则先加低盐的buffer使其中一酶作用后,再加入高盐buffer使另一酶作用,若无法以盐的高低分別加入不同的buffer,则先加入一种buffer作用后,加95﹪alcohol沉淀DNA,再加另一种buffer作用。载体的类型:•应用范围:克隆载体、表达载体。•应用对象:原核载体、真核载体(酵母、植物和动物)、穿梭载体。•构建来源:质粒载体、噬菌体载体、单链DNA噬菌体载体、粘粒载体、人工染色体载体。基因工程技术在环境保护中的应用随着科技的发展,人类在为自己生产出越来越多生活资料的同时,产生有害物质的数量和种类也大幅度增加,环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题.基因工程技术是在DNA分子水平上按照人们的意愿进行的定向改造生物的新技术.而利用基因工程技术提高微生物净化环境的能力是用于环境治理的一项关键技术。这一技术发展到今天,正形成产业化并列为世界领先专业技术领域之一,广泛应用于食品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力。一、基因工程在废水处理中的应用基因工程技术应用于废水处理是水处理领域一项具有广泛应用前景的新兴技术。常规的废水处理方法有物化法、生物法等。由于一般的物化方法只是污染物的转移,不能从根本上治理,且容易造成二次污染,成本也较高,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限,如果能利用基因工程技术对这些菌株进行遗传改造,提高微生物酶的降解活性,并可大量繁殖,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人们的重视。基因工程技术在废水处理中的应用有以下几个方面。1、基因工程在环境污染监测中的应用目前,聚合酶反应(简称PCR)技术和核酸探针技术是常用于水环境中微生物的检测技术.PCR技术是一种在体外模拟自然DNA复制过程的核酸扩增技术,常用于监测海洋环境中存在的微生物。标记的核酸探针可以用于待测核酸样本中特定基因序列,如监测饮用水中病毒的含量。PCR技术和核酸探针技术可能取代常规的水质分析,发展成为一种快速可靠水体微生物的检测技术,并将在细菌、病毒及其他毒物检测中得以迅速的应用发展。2、基因工程菌对水体中重金属离子的生物富集利用基因工程菌代替普通微生物处理重金属是近年来研究的热点。基因工程技术在重金属废水治理中的作用主要体现在提高微生物菌体细胞对重金属离子的富集容量以及提高菌体对特定重金属离子的选择性两个方面.此法采用生物工程技术将微生物细胞中参与富集的主导性基因导入繁殖力强、适应性能佳的受体菌株内,大大提高了菌体对重金属的适应性和处理效率。2.1提高重组菌重金属离子的富集容量若不考虑重组菌对特定重金属离子的选择性而只要提高重组菌重金属离子的富集容量,则通过在微生物细胞表面表达高容量金属结合蛋白或金属结合肽的方法就能很好地达到目的。另外,将经基因技术在菌体中表达的金属结合蛋白分离后固定在某些惰性载体表面同样也能达到重金属离子高富集容量的目的.2.2同时提高重组菌的富集容量和对特定重金属离子的选择性通过特异性金属转运系统的表达,基因工程菌对目标重金属的富集作用就介于特异性蛋白与目标重金属之间才存在的生物亲和力,具有很高的排他性,与生物吸附法的表面吸附特性完全不同,这就使有效回收利用废水中重金属离子,使废水中重金属元素实现再资源化成为可能.3、基因工程菌降解废水中的有机污染物生物处理法是废水中有机污染物降解的主要方法,但是部分难降解有机污染物需要不同降解菌之间的协同代谢或共代谢等复杂机制才能最终得以降解,这无疑降低了污染物的降解效率。首先,污染物代谢产物在不同降解菌间的跨膜转运是耗能过程,对细菌来说这是一种不经济的营养方式;其次,某些污染物的中间代谢产物可能具有毒性,对代谢活性有抑制作用。因此,将不同种属、来源的细菌的降解基因进行重组,把分属于不同菌体中的污染物代谢途径组合起来以构建具有特殊降解功能的超级降解菌,可以有效地提高微生物的降解能力。4、絮凝降解高效基因工程菌处理染料废水运用生物工程技术把降解菌的基因片段通过转基因工程转入絮凝菌株,培养出具有絮凝和降解双功能基因的高效基因工程菌并应用于染料废水的处理.

进一步的工作是继续构建系列基因工程菌,筛选出絮凝—降解性能好、遗传特性好和成本低的系列双功能基因工程菌株。并将该技术应用于染料生产废水的处理或其它领域。5、基因工程在水产养殖废水处理中的应用伴随着生物技术的发展,水产养殖业越来越多地运用生物工程技术来减少排放量和污染物数量。比如用微生物发酵生产和遗传工程技术将合成特定氨基酸的基因克隆进入微生物的细胞质中,然后借助微生物的增殖来生产蛋白质鱼类饲料,可以提高鱼对饲料的利用率,降低氮的排泄物,减少中氮的浓度;利用生物筛选技术和基因工程培育一些去污能力强的植物(特别是藻类)和微生物来净化水产养殖;利用生物工程对鱼类进行生理修正,使鱼类提高耐污能力和减少排泄物,比如Phelps培育的鱼类对沙门氏菌属形成抗体,这种鱼类就可以在污染水体中生长。郑耀通等对具有高效净化水产养殖水体的紫色非硫光合细菌进行了分离和筛选,筛选出来的紫色非硫光合细菌既有很强的净水能力,又是鱼类的饲料。目前国内的研究主要集中在光合细菌在水产养殖水体净化中的应用.6、转基因水生植物治理工业废水的重金属污染根据一些藻类等水生物植物具有从水环境中大量积累重金属离子的能力,利用基因工程消除水体中重金属的污染。由北京大学生命科学院蛋白质工程国家重点实验室研究成功的转基因蓝藻,可分别用于吸附并排除水域中重金属镉、汞、铅、镍污染,尤其是水稻、人参、中草药、茶叶等多种出口产品的污染和城市工业污水、矿业污水、电镀污水等,使其达到国际出口标准.此外,还可美化城市街道,防止环境再度污染。目前这项成果已经完成实验室阶段工作,可望尽快推广应用。每公斤转基因蓝藻可吸附10克以上的汞,已成为国家863项目和科技部九五重点攻关项目,并处于国际领先水平。二、基因工程在土壤污染中的应用由于人类的活动,使得污染物进入土壤并积累到一定程度,引起土壤环境质量恶化,对生物、水体、空气和人体健康造成危害。相对于其他环境介质污染,土壤污染具有隐蔽性和潜伏性、长期性和不可逆性,并且土壤对污染物有富集作用。因此对于土壤污染的治理受到了广大人民的关注。主要有以下几方面.1、基因工程技术应用于含油土壤的治理落地油和含油污水对土壤造成了严重污染,大量的油泥,不仅造成严重的环境问题,同时也给石油行业造成重大的经济损失。在生命科学已成为自然科学核心的今天,一批具有特殊生理生化功能的植物、微生物应运而生,基因修饰、改造、基因转移等现代生物技术的渗透推动了污油土壤处理生物技术的进一步发展,因此,利用生物技术进行油污土壤治理,具有广阔的应用前景.美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解。在石油开采过程中,采出的原油含有大量水分,原油脱下的废水中,含有大量的石油污染物.全向春引入现代生物技术,从一般的筛选工作,转入到降解代谢途径、降解酶系组成及其遗传的控制机制上来,在此基础上,实现定向育种,定向构建具有高效生物降解能力的基因工程菌。基因工程菌降解效率高、底物范围广、表达稳定,比自然环境中的降解性微生物更具竞争力,例如PCP103菌株的构建。基因工程菌的构建和应用对于美化环境、保护人类健康提供了一系列可行的途径.现代科学工作者把PCR技术用于基因工程菌的构建并已取得了一些成绩,国内外正在进行这方面的研究.随着生物技术的发展,基因工程菌在含油污水处理中的应用将会进一步完善,为人类造福.2、基因工程技术已成功开发出能吞食有毒废弃物的细菌美国加利福尼亚大学的微生物学工作者培育出了一种以PCBs(聚氯联苯)为食物的细菌。PCBs是一种污染环境的致癌物质,它不能被一般的自然过程破坏,这种从实验室中培育成的细菌被认为是有效解决这一难题的工具.该大学的研究人员是将一种一般土壤细菌(恶臭假单胞菌)的两个菌株的DNA进行交换,产生一种杂交的突变菌株。该基因交换菌株能破坏联苯基,而联苯基正是构成PCBs分子的一个关键基因。它由两个苯环组成的,有剧毒,在它们紧密结合时便成为潜在的致癌物。PCBs进入人体后,不能被人体的新陈代谢过程破坏,且能传给下一代。这种物质也能长期保存在土壤中不会被分解.新培育出的这种两个菌株的遗传物质发生交换的突变菌株则能分解PCBs,可使这种有毒害的物质变成无害的物质—-—水、二氧化碳和盐类。3、基因工程在治理土壤中重金属污染的应用全球工业化导致大量的潜在毒性化合物释放并进入生物圈,不仅对环境造成了污染,还会通过食物链对人体产生伤害。一般利用化学和物理方法清除土壤中重金属的污染,通常因为成本太高和破坏环境而不被大规模应用.而通过植物修复来转移,容纳或转化环境污染物可以达到清除污染物,治理环境的目的。植物修复技术是利用植物对重金属的吸收、富集和转化能力把土壤中残存的重金属吸收,富集到植物体内,然后收获植物,从而减少土壤中重金属的含量,实现环境修复的目标。可以利用土壤中天然微生物资源或人为添加的目的菌株,甚至是构建的特异降解功能菌株,将滞留的重金属降解和转化成无害的物质。三、基因工程在农业环保中的应用随着科技的发展,人类在为自己生产出越来越多的生活资料的同时,也向大自然排放了越来越多的有害和难降解物质,例如:农药、化肥等,这些物质正严重破坏环境和危害着人类的身体健康。因此,有意识地利用生物界中存在的净化能力进行生物治理,已渐渐成为环境治理的主要手段。基因工程在农业方面的应用前景是相当广阔的,除、抗虫害,还可能培育出能固氮的转基因作物,能抗旱、抗寒的转基因植物等.主要有以下几个方面。1、基因工程技术应用微生物降解农药农田长期过量施用农药,严重破坏生态平衡,造成土壤水质及食品中残留毒性增加,给人畜带来潜在危害。因微生物在物质循环中的重要作用,因此对环境修复也有着重要作用,然而农药(特别是难降解农药)恰恰限制了微生物的降解能力。应用基因工程原理与技术,对微生物进行改造,构建高效的基因工程菌可以显著提高农药降解效率。利用环境微生物知识中对细菌中的农药降解基因、降解途径等许多农药降解机制的阐述,可构建具有高效降解性能的工程菌。例如,现已开发出有净化农药(如DDT),降解水中染料以及环境中有机氯苯类和氯酚类、多氯联苯的基因工程菌”。农杆菌得到的OpdA(编码有机磷降解基因)构建原核表达质粒,并转到大肠杆菌正E.coliDHl0B中表达,对其表达产物进行研究,发现OpdA能对几种农药有酶解作用。2、基因工程应用于生物替代合成农药、化肥农作物在生长过程中容易受到致病菌及害虫的影响,因此在作物种植过程中往往需要使用大量的农药控制病虫害,这是造成食物中农药残留及环境污染的主要原因。2.1微生物农药代替合成农药、化肥基因工程技术的发展,为防治农林害虫提供了有效的新技术手段,微生物农药因此在世界范围受到广泛重视。微生物农药是指非化学合成,具有杀虫防病作用的微生物制剂,如微生物杀虫剂、杀菌剂、农用抗生素等,这类微生物包括杀虫防病的细菌、真菌和病毒.微生物杀虫剂对人畜安全无毒,不污染环境;杀虫作用具有一定的特异性和选择性,不会致死天敌和非目标昆虫;易和其他生物手段结合综合防治害虫,维持生态平衡;由于杀虫活性蛋白的多样性,昆虫产生抗性较缓慢;可以通过发酵法生产;生产成本较低;可以通过基因工程技术途径筛选或构建优良性能的菌株来满足生产应用的需要等。科学工作者正在对固氮酶及国氮酶基因进行深入的研究,并利用基因工程技术对固氮酶基因进行修饰改造,一方面提高固氮菌的固氮能力,另一方面扩大能与固氮菌共生的作物种类。随着基因工程技术的发展和对固氮菌分子生物学机理研究的不断深入,将会有越来越多的农作物通过固氮菌的作用直接利用空气中的氮气。从而减少化学肥料的使用量.2.2转基因农作物代替合成农药、化肥利用基因工程技术使作物获得抗病、抗虫的能力是替代合成农药最直接有效的方法.目前。已采用基因工程技术将各种抗病、抗虫基因转移到大豆、玉米和水稻等多种重要农作物中,利用转基因植物自身的能力抵抗外界病、虫的危害,达到减少农药使用的目的。3、基因工程技术应用于植物,改善环境3.1基因工程技术应用于植物治理重金属污染基因工程技术可用于改进一些生长快、生物量大的植物,使其对重金属具有高的耐受性和富集能力。通过研究转基因植物的修复能力,获得可应用于重金属污染治理的超富集植物新品种。3。2基因工程技术应用于植物治理持久性有机污染物近年来许多学者开展了有机污染土壤的植物修复研究和实践,并取得了一定进展。目前,英国的一些生物学家已经培养出一种转基因烟草,它们可以吸收土壤中的TNT,然后把TNT转化成对其他植物无害的物质,从而除去土壤中的污染。这些转基因烟草植物的储物基因来源于土壤中的一种细菌,这种细菌可以产生一种转化TNT的酶。选修3易考知识点背诵专题1

基因工程基因工程的概念基因工程的别名

基因拼接技术或DNA重组技术操作环境

生物体外操作对象

基因操作水平

DNA分子水平基本过程

剪切→拼接→导入→表达结果

产生人类需要的基因产物特点

打破种的界限,定向改造生物本质

基因重组(一)基因工程的基本工具1。“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有特异性。(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键.②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低.(2)与DNA聚合酶作用的异同:..。DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。3.“分子运输车"-—载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存.②具有一至多个限制酶切点,供外源DNA片段插入.③具有标记基因,供重组DNA的鉴定和选择.(2)最常用的载体是。质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。(3)其它载体:噬菌体、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获取1。目的基因是指:是人们所需要转移或改造的基因2。获取目的基因的方法__________________________________________3.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。4.PCR技术扩增目的基因(1)原理:DNA双链复制(2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。第二步:重组DNA分子1。目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。2.组成:目的基因+启动子+终止子+标记基因+复制原点(1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。(2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。(3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来.常用的标记基因是抗生素基因。第三步:转化受体细胞1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。2.常用的转化方法:将目的基因导入植物细胞:采用最多的方法是农杆菌转化法,其次还有基因枪法和花粉管通道法等.将目的基因导入动物细胞:最常用的方法是显微注射技术。此方法的受体细胞多是受精卵。将目的基因导入微生物细胞:原核生物作为受体细胞的原因是繁殖快、多为单细胞、遗传物质相对较少,最常用的原核细胞是大肠杆菌,其转化方法是:先用Ca2+处理细胞,使其成为感受态细胞,再将重组表达载体DNA分子溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程。3。第四步:目的基因的检测和表达1.首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交技术。2。其次还要检测目的基因是否转录出了mRNA,方法是采用用标记的目的基因作探针与mRNA杂交。3.最后检测目的基因是否翻译成蛋白质,方法是从转基因生物中提取蛋白质,用相应的抗体进行抗原-抗体杂交。4.有时还需进行个体生物学水平的鉴定。如转基因抗虫植物是否出现抗虫性状.(三)基因工程的应用1。植物基因工程:抗虫、抗病、抗逆转基因植物,利用转基因改良植物的品质.2。动物基因工程:3.基因治疗:把正常的外源基因导入病人体内,使该基因表达产物发挥作用。(四)蛋白质工程的概念蛋白质工程是指以蛋白质分子的结构规律及其生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。(基因工程在原则上只能生产自然界已存在的蛋白质)转录翻译蛋白质的改造大改:设计并制造自然界中不存在的全新蛋白质,使之具有特定的氨基酸序列、空间结构和预期功能中改:在蛋白质分子中替代某一个肽段或一个特定的结构域小改:通过基因工程中的定点诱变技术,有目的改造蛋白质分子中某活性部位的1个或几个氨基酸残基,以改善蛋白质的性质和功能定点诱变技术是改变蛋白质结构的核心之一PCR技术是基因定点诱变的常用方法蛋白质工程与基因工程的关系

蛋白质工程基因工程实质

通过改造基因,以定向改造天然蛋白质,甚至创造自然界不存在的蛋白质

将目的基因从供体转移到受体细胞,并在受体细胞中表达结果

合成自然界不存在的蛋白质

只能生产自然界已存在的蛋白质联系

蛋白质工程是在基因工程基础上,延伸出的第二代基因工程《基因工程及其应用》教案【教学目标】知识目标掌握基因工程的概念、原理;基因操作的工具及其操作过程.能力目标培养学生分析、推理、归纳、总结的能力。德育目标培养学生实事求是的科学态度从现象到本质的科学的研究方法。【教学重点】基因工程的基本原理,基因操作的工具,基本步骤及其应用.【教学难点】基因工程的基本原理,基因工程的应用及其安全性。【课时安排】1课时【教学过程】一、情境创设提问:各种生物间的性状千差万别这是为什么呢?引导:生物体的不同性状是通过基因特异性表达而形成的.列举:几种生物的不同性状:够吐出丝;豆科植物的根瘤菌能够固定空气中的氮气;青霉菌能产生对人类有用的抗生素——青霉素.提问:人类能不能改造性状?能不能使本身没有某个性状的生物具有某个特定性状呢?引导:让禾本科植物能够固定空气中的氮气;能否让细菌“吐出”蚕丝;让微生物生产

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论