版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学与思维发展的关系人类的思维是后天形成的,思维受到各种因素的影响,并表现出多面性。但符合逻辑的、精密的、深刻的、聪慧的思维是每个人希望达到的最高境界之一。数学与数学教育如此受重视,不完全是因为其广泛的用途,也不能完全从应用的角度来看待数学。在上一讲中我们说明了数学能提供观察世界的一般观念和方法外,实际上数学对人的其他发展,尤其是对人的思维发展有不可或缺的作用和价值,数学是为人的更完美发展提供了良好训练。数学与思维发展的关系人类的思维是后天形成的,思维数学与思维发展的关系人们常把数学形容为思维的体操。培根说过,哲理使人深刻,诗歌使人聪慧,演算使人精密。其实数学不单单使人精密,数学同样也使人深刻,使人聪慧!
哲学、诗歌——不要求每人都会数学——每人必须会
数学与思维发展的关系人们常把数学形容为思维的体操1、归纳与完全归纳
思维的一种形式是归纳。那么归纳性质的表征是什么呢?所谓归纳,是指通过对有限多个同类对象的观察分析,猜测一种共性或规律,并证明这种共性的确是正确的一种思维方法。当“同类对象”为有限多个时,我们将对象一一验证就可获得结论(对或错);但当“同类对象”无法穷举或实际上就是无限多时,我们原有的思维方法就无法具有说服力了。因此必须寻找一种处理无限的思维方法.即在数学上所要求的完全归纳,确保其正确性.1、归纳与完全归纳思维的一种形式是归纳。那么归纳性质1、归纳与完全归纳我们熟悉的完全归纳法——数学归纳法。我们来看一些(非完全归纳)例子。
1、归纳与完全归纳我们熟悉的完全归纳法——数学归1、归纳与完全归纳
1、归纳与完全归纳1、归纳与完全归纳1、归纳与完全归纳1、归纳与完全归纳这说明,考察一组对象的性质或规律时,可能出错。究其原因在于对于“无穷多”的思维方式不能按照“有限多”方式来处理,否则容易出现问题。这种方法通常成为不完全归纳。1、归纳与完全归纳这说明,考察一组对象的性质或规律时,可能出1、归纳与完全归纳数学对归纳的完全性是要求十分严格,其意义不仅对所有的自然科学是重要的,而且对人文社会科学也是重要的。借鉴数学思维的严格性,可以大大提高社会科学学科的科学性。以例带证的方法属于不完全归纳,显然不能令人信服。目前许多社会科学学科还是按照这种方式来解释其命题,科学性显然要遭到质疑。社会科学;实验学科;1、归纳与完全归纳数学对归纳的完全性是要求十分2、逻辑思维的代表:演绎当归纳具有完全性时,其方法可以说属于逻辑的范畴了。逻辑思维的代表之一是演绎思维。演义思维最早来自几何学,其影响之广泛使得人们特别看重演绎科学的地位。实际上,一门学科是否为成熟的是以它是否已形成一套演绎体系(公理体系)为标志的。数学的这一特点是与它极强的逻辑性和抽象性紧密联系在一起的。2、逻辑思维的代表:演绎当归纳具有完全性时,其方法2、逻辑思维的代表:演绎抽象:强抽象弱抽象。任意四边形凸四边形梯形平行四边形矩形菱形正方形强抽象弱抽象2、逻辑思维的代表:演绎抽象:强抽象弱抽象。任意四边形2、逻辑思维的代表:演绎例子:函数概念的演变过程。17世纪:幂函数(多项式)的代名词。18世纪:表达式(初等函数)。欧拉给出了y=f(x)的表示。初等函数——非初等函数(级数、积分表示)——解析表达式(一个式子)——分段函数(伪函数,柯西引入了“对应”术语,但还是解析式子)——Dirichlet函数:Dirichlet函数不但从表达式上突破了解析式的限制,而且还对“凡函数至少在一点连续”提出了挑战。2、逻辑思维的代表:演绎例子:函数概念的演变过程。2、逻辑思维的代表:演绎虽然这个表达式是认为构造的,带有主观性质,但它却推动了人们对函数本质的客观认识。这也反映了认识论中的基本内涵。主观判断主观事物一定要小心,不要把主观臆相混同于主观构想。科学需要主观构想的。2、逻辑思维的代表:演绎虽然这个表达式是认为构造的,带有主观2、逻辑思维的代表:演绎Dirichlet函数——对应规则(何为对应?)——有序对(x,y)(新概念)——集合函数(泛函)——广义函数(δ函数)——......上述过程实际上就是演绎思维弱抽象的例子.2、逻辑思维的代表:演绎Dirichlet函数——对应规则(2、逻辑思维的代表:演绎再以函数为例给出强抽象的例子.连续性问题解决后,出现了可微性问题.f(x)=|x|是连续但在0点不可微的例子.问题:连续函数至少有一个可微点?Weiestrauss构造了一个处处连续但处处不可微的例子,
这个例子让数学家惊叹:直观似乎告诉我们不可能有这种函数,直观欺骗了我们.2、逻辑思维的代表:演绎再以函数为例给出强抽象的例子.2、逻辑思维的代表:演绎函数——连续函数——不可微函数——处处连续处处不可微函数。强抽象过程。但抽象性依然很强。数学的抽象方法很多,需要学习和实践逐步加深了解,在你领会的同时,抽象思维能力就得到了加强和提高。需要说明的是,逻辑思维是抽象思维,但抽象思维不一定是逻辑的。数学的逻辑性特点使得数学训练直接有利于发展人的逻辑思维,其作用特别突出。2、逻辑思维的代表:演绎函数——连续函数——不可微函数——处数学与思维发展的关系人类的思维是后天形成的,思维受到各种因素的影响,并表现出多面性。但符合逻辑的、精密的、深刻的、聪慧的思维是每个人希望达到的最高境界之一。数学与数学教育如此受重视,不完全是因为其广泛的用途,也不能完全从应用的角度来看待数学。在上一讲中我们说明了数学能提供观察世界的一般观念和方法外,实际上数学对人的其他发展,尤其是对人的思维发展有不可或缺的作用和价值,数学是为人的更完美发展提供了良好训练。数学与思维发展的关系人类的思维是后天形成的,思维数学与思维发展的关系人们常把数学形容为思维的体操。培根说过,哲理使人深刻,诗歌使人聪慧,演算使人精密。其实数学不单单使人精密,数学同样也使人深刻,使人聪慧!
哲学、诗歌——不要求每人都会数学——每人必须会
数学与思维发展的关系人们常把数学形容为思维的体操1、归纳与完全归纳
思维的一种形式是归纳。那么归纳性质的表征是什么呢?所谓归纳,是指通过对有限多个同类对象的观察分析,猜测一种共性或规律,并证明这种共性的确是正确的一种思维方法。当“同类对象”为有限多个时,我们将对象一一验证就可获得结论(对或错);但当“同类对象”无法穷举或实际上就是无限多时,我们原有的思维方法就无法具有说服力了。因此必须寻找一种处理无限的思维方法.即在数学上所要求的完全归纳,确保其正确性.1、归纳与完全归纳思维的一种形式是归纳。那么归纳性质1、归纳与完全归纳我们熟悉的完全归纳法——数学归纳法。我们来看一些(非完全归纳)例子。
1、归纳与完全归纳我们熟悉的完全归纳法——数学归1、归纳与完全归纳
1、归纳与完全归纳1、归纳与完全归纳1、归纳与完全归纳1、归纳与完全归纳这说明,考察一组对象的性质或规律时,可能出错。究其原因在于对于“无穷多”的思维方式不能按照“有限多”方式来处理,否则容易出现问题。这种方法通常成为不完全归纳。1、归纳与完全归纳这说明,考察一组对象的性质或规律时,可能出1、归纳与完全归纳数学对归纳的完全性是要求十分严格,其意义不仅对所有的自然科学是重要的,而且对人文社会科学也是重要的。借鉴数学思维的严格性,可以大大提高社会科学学科的科学性。以例带证的方法属于不完全归纳,显然不能令人信服。目前许多社会科学学科还是按照这种方式来解释其命题,科学性显然要遭到质疑。社会科学;实验学科;1、归纳与完全归纳数学对归纳的完全性是要求十分2、逻辑思维的代表:演绎当归纳具有完全性时,其方法可以说属于逻辑的范畴了。逻辑思维的代表之一是演绎思维。演义思维最早来自几何学,其影响之广泛使得人们特别看重演绎科学的地位。实际上,一门学科是否为成熟的是以它是否已形成一套演绎体系(公理体系)为标志的。数学的这一特点是与它极强的逻辑性和抽象性紧密联系在一起的。2、逻辑思维的代表:演绎当归纳具有完全性时,其方法2、逻辑思维的代表:演绎抽象:强抽象弱抽象。任意四边形凸四边形梯形平行四边形矩形菱形正方形强抽象弱抽象2、逻辑思维的代表:演绎抽象:强抽象弱抽象。任意四边形2、逻辑思维的代表:演绎例子:函数概念的演变过程。17世纪:幂函数(多项式)的代名词。18世纪:表达式(初等函数)。欧拉给出了y=f(x)的表示。初等函数——非初等函数(级数、积分表示)——解析表达式(一个式子)——分段函数(伪函数,柯西引入了“对应”术语,但还是解析式子)——Dirichlet函数:Dirichlet函数不但从表达式上突破了解析式的限制,而且还对“凡函数至少在一点连续”提出了挑战。2、逻辑思维的代表:演绎例子:函数概念的演变过程。2、逻辑思维的代表:演绎虽然这个表达式是认为构造的,带有主观性质,但它却推动了人们对函数本质的客观认识。这也反映了认识论中的基本内涵。主观判断主观事物一定要小心,不要把主观臆相混同于主观构想。科学需要主观构想的。2、逻辑思维的代表:演绎虽然这个表达式是认为构造的,带有主观2、逻辑思维的代表:演绎Dirichlet函数——对应规则(何为对应?)——有序对(x,y)(新概念)——集合函数(泛函)——广义函数(δ函数)——......上述过程实际上就是演绎思维弱抽象的例子.2、逻辑思维的代表:演绎Dirichlet函数——对应规则(2、逻辑思维的代表:演绎再以函数为例给出强抽象的例子.连续性问题解决后,出现了可微性问题.f(x)=|x|是连续但在0点不可微的例子.问题:连续函数至少有一个可微点?Weiestrauss构造了一个处处连续但处处不可微的例子,
这个例子让数学家惊叹:直观似乎告诉我们不可能有这种函数,直观欺骗了我们.2、逻辑思维的代表:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直剃刀细分市场深度研究报告
- 台式烹饪炉产品供应链分析
- 农用化学品研究服务行业经营分析报告
- 螺纹磨床产品供应链分析
- 为航运破冰行业相关项目经营管理报告
- 乐器修复行业营销策略方案
- 动物剥皮用器具和工具产业链招商引资的调研报告
- 婴儿摇床产业链招商引资的调研报告
- 建防护堤行业相关项目经营管理报告
- 行李箱用成套收纳袋项目营销计划书
- 深圳高层次人才事项申请表
- 科学坐月子课件(PPT 31页)
- 电瓶车风险管控措施告知牌
- 莴苣种植管理ppt课件(PPT 21页)
- 英文文献阅读ppt课件(PPT 24页)
- 医院患者诊疗信息安全风险评估和应急工作机制制定应急预案XX医院患者诊疗信息安全风险应急预案
- 《国际经济法》课件国际货物贸易法笫一讲 国际货物买卖合同
- 负荷计算表(完美版)
- 行政法及公务员法专题与参考答案及解析
- 12.4 n次方根
- 生产计划作业流程图
评论
0/150
提交评论