偏微分方程数值解电子教案Read课件_第1页
偏微分方程数值解电子教案Read课件_第2页
偏微分方程数值解电子教案Read课件_第3页
偏微分方程数值解电子教案Read课件_第4页
偏微分方程数值解电子教案Read课件_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章有限差分法的基本知识1、差分方程2、截断误差3、收敛性4、稳定性第二章有限差分法的基本知识第二章有限差分法的基本知识第二章有限差分法的基本知识1§1差分方程

有限差分法和有限元法是解偏微分方程的两种主要的数值方法。由于数字电子计算机只能存储有限个数据和作有限次运算,所以任何一种适用于计算机解题的方法,都必须把连续问题离散化,最终化成有限形式的代数方程组。§1差分方程有限差分法和有限元法是解偏2

3

1区域的剖分(区域的离散化)xt01区域的剖4高等数学中,我们学习过Taylor公式:1微分方程离散(差分方程)1微分方程离散(差分方程)高等数学中,我们学习过Taylor公式:1微分方程离散(差5

6偏微分方程数值解电子教案Read课件7偏微分方程数值解电子教案Read课件8偏微分方程数值解电子教案Read课件9高等数学中,我们学习过Green公式:2积分插值法2积分插值法高等数学中,我们学习过Green公式:2积分插值法2积分10

oHxtEFGL1L2L3L4oHxtEF11

12

oxtj-1jj+1n-1nn+1EFGHoxtj-113

14

oxtj-1jj+1nn+1EFGHoxtj-115

16§2截断误差§2截断误差17偏微分方程数值解电子教案Read课件18偏微分方程数值解电子教案Read课件19§3收敛性

一个差分格式能否在实际中使用,最终要看能否任意地逼近微分方程的解。这样对于每一个差分格式,人们便从两个方面加以考虑:一是引入收敛性的概念,考察差分格式在理论上的准确解能否任意逼近微分方程的解;二是引入稳定性的概念,考察差分格式在实际计算中的近似解能否任意逼近差分方程的解。§3收敛性一个差分格式能否在实际中使用20偏微分方程数值解电子教案Read课件21§4稳定性§4稳定性22偏微分方程数值解电子教案Read课件23偏微分方程数值解电子教案Read课件24偏微分方程数值解电子教案Read课件25偏微分方程数值解电子教案Read课件261.

差分方程、截断误差、收敛性、稳定性的概念;

2.构造差分方程方法(直接法和积分插值法)、求截断误差;(重点)

3.如何将偏微分方程构造成相应的差分方程、并求由此产生的截断误差.(难点)主要内容1.差分方程、截断误差、收敛性、2.构造差分方程方27*作业*作业*作业*作业28第二章完第二章完29B.Taylor简介1685.8.18生于英格兰;

1731.11.29在伦敦去世.1705进入剑桥大学;1709法学学士;1714法学博士;1712英国皇家学会会员;1714~1718英国皇家学会秘书;微积分发明权仲裁委员;1715出版《增量法及其逆》,该书奠定有限差分法、幂级数展开、弦振动问题;在物理、流体动力等大量工作。写作风格过于简洁导致许多工作未获更高声誉。B.Taylor简介1685.8.18生于英格兰;

17330第二章有限差分法的基本知识1、差分方程2、截断误差3、收敛性4、稳定性第二章有限差分法的基本知识第二章有限差分法的基本知识第二章有限差分法的基本知识31§1差分方程

有限差分法和有限元法是解偏微分方程的两种主要的数值方法。由于数字电子计算机只能存储有限个数据和作有限次运算,所以任何一种适用于计算机解题的方法,都必须把连续问题离散化,最终化成有限形式的代数方程组。§1差分方程有限差分法和有限元法是解偏32

33

1区域的剖分(区域的离散化)xt01区域的剖34高等数学中,我们学习过Taylor公式:1微分方程离散(差分方程)1微分方程离散(差分方程)高等数学中,我们学习过Taylor公式:1微分方程离散(差35

36偏微分方程数值解电子教案Read课件37偏微分方程数值解电子教案Read课件38偏微分方程数值解电子教案Read课件39高等数学中,我们学习过Green公式:2积分插值法2积分插值法高等数学中,我们学习过Green公式:2积分插值法2积分40

oHxtEFGL1L2L3L4oHxtEF41

42

oxtj-1jj+1n-1nn+1EFGHoxtj-143

44

oxtj-1jj+1nn+1EFGHoxtj-145

46§2截断误差§2截断误差47偏微分方程数值解电子教案Read课件48偏微分方程数值解电子教案Read课件49§3收敛性

一个差分格式能否在实际中使用,最终要看能否任意地逼近微分方程的解。这样对于每一个差分格式,人们便从两个方面加以考虑:一是引入收敛性的概念,考察差分格式在理论上的准确解能否任意逼近微分方程的解;二是引入稳定性的概念,考察差分格式在实际计算中的近似解能否任意逼近差分方程的解。§3收敛性一个差分格式能否在实际中使用50偏微分方程数值解电子教案Read课件51§4稳定性§4稳定性52偏微分方程数值解电子教案Read课件53偏微分方程数值解电子教案Read课件54偏微分方程数值解电子教案Read课件55偏微分方程数值解电子教案Read课件561.

差分方程、截断误差、收敛性、稳定性的概念;

2.构造差分方程方法(直接法和积分插值法)、求截断误差;(重点)

3.如何将偏微分方程构造成相应的差分方程、并求由此产生的截断误差.(难点)主要内容1.差分方程、截断误差、收敛性、2.构造差分方程方57*作业*作业*作业*作业58第二章完第二章完59B.Taylor简介1685.8.18生于英格兰;

1731.11.29在伦敦去世.1705

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论