版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a22.将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为()A. B. C. D.3.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD4.下列计算正确的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a6÷a2=a35.下列计算正确的是()A.(a2)3=a6 B.a2•a3=a6 C.a3+a4=a7 D.(ab)3=ab36.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8B.9C.10D.117.已知圆内接正三角形的面积为3,则边心距是()A.2 B.1 C. D.8.下列运算中,正确的是()A.x2+5x2=6x4 B.x3 C. D.9.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣1010.估计﹣÷2的运算结果在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和411.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A. B.C. D.12.已知地球上海洋面积约为361000000km2,361000000这个数用科学记数法可表示为()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.15.如图,在圆心角为90°的扇形OAB中,半径OA=1cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_____cm1.16.函数中自变量的取值范围是______________17.若a:b=1:3,b:c=2:5,则a:c=_____.18.如图,已知矩形ABCD中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE,垂足为F.则下列结论:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正确的结论是_____.(把正确结论的序号都填上)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的长.20.(6分)如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.21.(6分)已知关于的一元二次方程.试证明:无论取何值此方程总有两个实数根;若原方程的两根,满足,求的值.22.(8分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为;(2)补全条形统计图(3)扇形统计图中,类所在扇形的圆心角的度数为;(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名.23.(8分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.24.(10分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.25.(10分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.26.(12分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)根据图象写出不等式kx+b﹣≤0的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.27.(12分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
利用完全平方公式及平方差公式计算即可.【详解】解:A、原式=a2-6a+9,本选项错误;
B、原式=a2-9,本选项正确;
C、原式=a2-2ab+b2,本选项错误;
D、原式=a2+2ab+b2,本选项错误,
故选:B.【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.2、C【解析】
先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.【详解】∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.3、D【解析】
根据垂径定理判断即可.【详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故选D.【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.4、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=9b2;选项D,原式=5、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A.点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.6、C【解析】试题分析:已知一个正多边形的一个外角为36°,则这个正多边形的边数是360÷36=10,故选C.考点:多边形的内角和外角.7、B【解析】
根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x,利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.【详解】如图,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,则AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以该圆的内接正三边形的边心距为1,故选B.【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.8、C【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A.x2+5x2=,本项错误;B.,本项错误;C.,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.9、C【解析】
本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.10、D【解析】
先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.【详解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故选D.【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.11、C【解析】
先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是,故选C.【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.12、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361000000用科学记数法表示为3.61×1.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x+x=75.【解析】试题解析:设长方形墙砖的长为x厘米,
可得:x+x=75.14、50(1﹣x)2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.15、π+﹣【解析】试题分析:如图,连接OC,EC,由题意得△OCD≌△OCE,OC⊥DE,DE==,所以S四边形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以阴影部分的面积为:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案为.考点:扇形面积的计算.16、x≤2且x≠1【解析】
解:根据题意得:且x−1≠0,解得:且故答案为且17、2∶1【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.详解:a:b=1:3=(1×2):(3×2)=2:6;
b:c=2:5=(2×3):(5×3)=6:1;,
所以a:c=2:1;
故答案为2:1.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.18、①②【解析】
只要证明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解决问题.【详解】∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正确,不妨设DF平分∠ADC,则△ADF是等腰直角三角形,这个显然不可能,故③错误,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④错误,故答案为①②.【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、BD=2.【解析】
作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【详解】作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.20、(1)答案见解析;(2)45°.【解析】
(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.21、(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.22、(1)300;(2)见解析;(3)108°;(4)约有840名.【解析】
(1)根据A种类人数及其占总人数百分比可得答案;
(2)用总人数乘以B的百分比得出其人数,即可补全条形图;
(3)用360°乘以C类人数占总人数的比例可得;
(4)总人数乘以C、D两类人数占样本的比例可得答案.【详解】解:(1)本次被调查的学生的人数为69÷23%=300(人),
故答案为:300;
(2)喜欢B类校本课程的人数为300×20%=60(人),
补全条形图如下:
(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,
故答案为:108°;
(4)∵2000×=840,
∴估计该校喜爱C,D两类校本课程的学生共有840名.【点睛】本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.23、(1)1<x<3或x<0;(2)证明见解析.【解析】
(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;再根据图像直接写出不等式的解集;(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,△AGC∽△BHA,设B(m,)、C(n,),根据对应线段成比例即可得出mn=-9,联立,得,根据根与系数的关系得,由此得出为定值.【详解】解:(1)将B(3,1)代入,∴m=3,,将B(3,1)代入,∴,,∴,∴不等式的解集为1<x<3或x<0(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,则△AGC∽△BHA,设B(m,)、C(n,),∵,∴,∴,∴,∴mn=-9,联立∴,∴∴,∴为定值.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.24、(1)m≤1;(2)3≤m≤1.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.试题解析:(1)根据题意得△=(-6)2-1(2m+1)≥0,解得m≤1;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤1,所以m的范围为3≤m≤1.25、(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《绵阳求职招聘技巧》课件
- 2020-2021学年辽宁省沈阳市郊联体高一下学期期末考试历史试题
- 小学一年级10以内数字的分与合
- 小学数学新人教版一年级下册20以内口算练习题大全
- 小学三年级数学三位数加减法口算题
- 《汽车行业概述》课件
- 《运输与包装》课件
- 吉他行业客服工作总结用心服务打造音乐快乐
- 《光纤通信基础知识》课件
- 酒店招聘与人才引进策略
- 2024年导游服务技能大赛《导游综合知识测试》题库及答案
- 高中化学实验开展情况的调查问卷教师版
- 期末全真模拟测试卷2(试题)2024-2025学年二年级上册数学苏教版
- 《声声慢(寻寻觅觅)》课件 统编版高中语文必修上册
- 初中物理-:八年级上学期竞赛题
- 生物治疗与再生医疗应用
- 2024年1月广东省高中学业水平考试物理试题(附答案)
- 帕金森患者生活质量问卷(PDQ-39)
- 汽车电器DFMEA-车载终端
- 安全教育年度计划养老院
- 挖掘机、装载机岗位风险告知卡
评论
0/150
提交评论