2023届广东省揭阳揭西县联考九年级数学第一学期期末达标测试试题含解析_第1页
2023届广东省揭阳揭西县联考九年级数学第一学期期末达标测试试题含解析_第2页
2023届广东省揭阳揭西县联考九年级数学第一学期期末达标测试试题含解析_第3页
2023届广东省揭阳揭西县联考九年级数学第一学期期末达标测试试题含解析_第4页
2023届广东省揭阳揭西县联考九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼()A.条 B.条 C.条 D.条2.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶53.如图所示的是太原市某公园“水上滑梯”的侧面图,其中段可看成是双曲线的一部分,其中,矩形中有一个向上攀爬的梯子,米,入口,且米,出口点距水面的距离为米,则点之间的水平距离的长度为()A.米 B.米 C.米 D.米4.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2) B.(2,3) C.(2,﹣3) D.(﹣3,﹣3)5.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10 B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0 D.a=﹣1,b=0,c=66.方程(x+1)2=4的解是()A.x1=﹣3,x2=3 B.x1=﹣3,x2=1 C.x1=﹣1,x2=1 D.x1=1,x2=37.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-28.用配方法解方程,变形后的结果正确的是()A. B. C. D.9.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根 B.只有一个实数根C.没有实数根 D.有两个不相等的实数根10.在中,,若已知,则()A. B. C. D.11.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.12.己知正六边形的边长为2,则它的内切圆的半径为(

)A.1 B. C.2 D.2二、填空题(每题4分,共24分)13.若代数式是完全平方式,则的值为______.14.如图,为了测量塔的高度,小明在处仰望塔顶,测得仰角为,再往塔的方向前进至处,测得仰角为,那么塔的高度是____________.(小明的身高忽略不计,结果保留根号)15.如图,已知两个反比例函数和在第一象限内的图象,设点在上,轴于点交于点轴于点交于点,则四边形的面积为_______________________.16.二次函数的图象与y轴的交点坐标是__.17.一个不透明的袋子中装有除颜色外其他都相同的2个红球和1个黄球,随机摸出一个小球后,放回并摇匀,再随机摸岀一个,则两次都摸到黄球的概率为__________.18.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为_____.三、解答题(共78分)19.(8分)A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。请画树状图,求两次传球后,球在A手中的概率.20.(8分)已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.(1)求抛物线的解析式和直线的解析式.(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.21.(8分)甲、乙两人进行摸牌游戏现有三张形状大小完全相同的牌,正面分别标有数字2,3,1.将三张牌背面朝上,洗匀后放在桌子上,甲从中随机抽取一张牌,记录数字后放回洗匀,乙再从中随机抽取一张.(1)甲从中随机抽取一张牌,抽取的数字为奇数的概率为;(2)请用列表法或画树状图的方法,求两人抽取的数字相同的概率.22.(10分)已知关于x的一元二次方程x2﹣4x+3m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.23.(10分)二次函数图象过,,三点,点的坐标为,点的坐标为,点在轴正半轴上,且,求二次函数的表达式.24.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:售价x(元/千克)455060销售量y(千克)11010080(1)求y与x之间的函数表达式;(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?25.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)26.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.

参考答案一、选择题(每题4分,共48分)1、B【分析】利用样本出现的概率估计整体即可.【详解】设湖里有鱼x条根据题意有解得,经检验,x=800是所列方程的根且符合实际意义,故选B【点睛】本题主要考查用样本估计整体,找到等量关系是解题的关键.2、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故选A.点睛:若,则,.3、D【分析】根据题意B、C所在的双曲线为反比例函数,B点的坐标已知为B(2,5),代入即可求出反比例函数的解析式:y=,C(x,1)代入y=中,求出C点横坐标为10,可以得出DE=OD-OE即可求出答案.【详解】解:设B、C所在的反比例函数为y=B(xB,yB)∴xB=OE=AB=2yB=EB=OA=5代入反比例函数式中5=得到k=10∴y=∵C(xC,yC)yC=CD=1代入y=中∴1=xC=10∴DE=OD-OE=xC-xB=10-2=8故选D【点睛】此题主要考查了反比例函数的定义,根据已知参数求出反比例函数解析式是解题的关键.4、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数即可.【详解】解:由题意,得

点P(-2,3)关于原点对称的点的坐标是(2,-3),

故选C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5、D【分析】将所得抛物线解析式整理成顶点式形式,然后写出顶点坐标,再根据向右平移横坐标加,向下平移减逆向求出原抛物线的顶点坐标,从而求出原抛物线解析式,再展开整理成一般形式,最后确定出a、b、c的值.【详解】解:∵y=-(x+2)2+3,∴抛物线的顶点坐标为(-2,3),∵抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位长度得抛物线y=-(x+2)2+3,-2+2=0,3+3=1,∴平移前抛物线顶点坐标为(0,1),∴平移前抛物线为y=-x2+1,∴a=-1,b=0,c=1.故选D.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减;本题难点在于逆运用规律求出平移前抛物线顶点坐标.6、B【解析】利用直接开平方的方法解一元二次方程得出答案.【详解】(x+1)2=4则x+1=±2,解得:x1=−1-2=-3,x2=−1+2=1.故选B.【点睛】此题主要考查了直接开平方法解方程,正确开平方是解题关键.7、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【点睛】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.8、D【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】,,,所以,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.9、C【解析】试题分析:利用根的判别式进行判断.解:∵∴此方程无实数根.故选C.10、B【分析】根据题意利用三角函数的定义,定义成三角形的边的比值,进行分析计算即可求解.【详解】解:在中,,∵,设BC=3x,则AC=4x,根据勾股定理可得:,∴.故选:B.【点睛】本题主要考查三角函数的定义,注意掌握求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.11、A【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为,故选A.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12、B【解析】由题意得,∠AOB==60°,∴∠AOC=30°,∴OC=2⋅cos30°=2×=,故选B.二、填空题(每题4分,共24分)13、【分析】利用完全平方式的结构特征判断即可确定出m的值.【详解】解:∵代数式x2+mx+1是一个完全平方式,

∴m=±2,

故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14、【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【详解】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,

∴∠ADB=∠DBC-∠A=30°,

∴∠ADB=∠A=30°,

∴BD=AB=60m,

∴CD=BD•sin60°=60×=30(m).

故答案为:30.【点睛】此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.15、【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=,S矩形PCOD=3,然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积.【详解】解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=×=,S矩形PCOD=3,∴四边形PAOB的面积=3--=1故答案为:1.【点睛】本题考查了反比函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.16、(0,3)【分析】令x=0即可得到图像与y轴的交点坐标.【详解】当x=0时,y=3,∴图象与y轴的交点坐标是(0,3)故答案为:(0,3).【点睛】此题考查二次函数图像与坐标轴的交点坐标,图像与y轴交点的横坐标等于0,与x轴交点的纵坐标等于0,依此列方程求解即可.17、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.【详解】画树状图如下:

由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有1种结果,

∴两次都摸到黄球的概率为;

故答案为:.【点睛】此题考查列表法或树状图法求概率.解题关键在于掌握注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.18、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.三、解答题(共78分)19、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在A手中的情况,再利用概率公式即可求得答案【详解】解:列树状图一共有4种结果,两次传球后,球在A手中的有2种情况,∴P(两次传球后,球在A手中的).【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20、(1)抛物线的表达式为:,直线的表达式为:;(2)存在,理由见解析;点或或或.【解析】(1)二次函数表达式为:y=a(x-1)2+9,即可求解;

(2)S△DAC=2S△DCM,则,,即可求解;

(3)分AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:,将点的坐标代入上式并解得:,故抛物线的表达式为:…①,则点,将点的坐标代入一次函数表达式并解得:直线的表达式为:;(2)存在,理由:二次函数对称轴为:,则点,过点作轴的平行线交于点,设点,点,∵,则,解得:或5(舍去5),故点;(3)设点、点,,①当是平行四边形的一条边时,点向左平移4个单位向下平移16个单位得到,同理,点向左平移4个单位向下平移16个单位为,即为点,即:,,而,解得:或﹣4,故点或;②当是平行四边形的对角线时,由中点公式得:,,而,解得:,故点或;综上,点或或或.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.21、(1);(2).【分析】(1)解答时根据条件找出规律解答,先找出奇数,然后求概率.(2)熟悉列表法或画树状图法,求出数字相同的概率.【详解】(1)∵共有3张纸牌,其中数字是奇数的有2张,∴甲从中随机抽取一张牌,抽取的数字为奇数的概率为,故答案为.(2)列表如下:由表知,共有9种等可能结果,其中两人抽取的数字相同的有3种结果,所以两人抽取的数字相同的概率为=.【点睛】此题重点考察学生对概率的实际应用能力,抓住概率的计算公式,理解列表法或画树状图法是解题的关键.22、(2)m<2;(2)x2=2+,x2=2-.【解析】(2)由方程有两个不相等的实数根知△>0,列不等式求解可得;(2)求出m的值,解方程即可解答.【详解】(2)∵方程有两个不相等的实数根,∴△=42﹣4(3m﹣2)=24﹣22m>0,解得:m<2.(2)∵m为正整数,∴m=2.∴原方程为x2﹣4x+2=0解这个方程得:x2=2+,x2=2-.【点睛】考查了根的判别式,熟练掌握方程的根的情况与判别式的值间的关系是解题的关键.23、【分析】根据题目所给信息可以得出点C的坐标为(0,5),把A、B、C三点坐标代入可得抛物线解析式.【详解】解∵点的坐标为点的坐标为∴又∵点在轴正半轴上∴点的坐标为设二次函数关系式为把,代入得,∴【点睛】本题考查的知识点是用待定系数法求二次函数解析式,根据题目信息得出点C的坐标是解此题的关键.24、(1)y=﹣2x+200(40≤x≤60);(2)售价为60元时获得最大利润,最大利润是1600元.【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.【详解】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200(40≤x≤60);(2)w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵40≤x≤60,∴当x=60时,w取得最大值为1600,答:w与x之间的函数表达式为W=﹣2x2+280x﹣800

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论