




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,点,分别在,边上,,,若,,则线段的长为()A. B. C. D.52.下列语句中,正确的有()A.在同圆或等圆中,相等的圆心角所对的弧相等 B.平分弦的直径垂直于弦C.长度相等的两条弧相等 D.圆是轴对称图形,任何一条直径都是它的对称轴3.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度是()A.4cm B.3cm C.2cm D.1cm4.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.5.下列图形中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.6.如图,PA、PB、CD分别切⊙O于点A、B、E,CD分别交PA、PB于点C、D.下列关系:①PA=PB;②∠ACO=∠DCO;③∠BOE和∠BDE互补;④△PCD的周长是线段PB长度的2倍.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个7.对于二次函数y=-x2+2x-3,下列说法正确的是()A.当x>0,y随x的增大而减少 B.当x=2时,y有最大值-1C.图像的顶点坐标为(2,-5) D.图像与x轴有两个交点8.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A. B.1.5cm C. D.1cm9.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.10.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个11.下列事件是必然事件的是()A.任意购买一张电影票,座号是“7排8号” B.射击运动员射击一次,恰好命中靶心C.抛掷一枚图钉,钉尖触地 D.13名同学中,至少2人出生的月份相同12.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.点关于原点的对称点的坐标为__________.14.已知是关于的方程的一个根,则___________.15.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.16.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是_____.17.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为_____度.18.如图,是等腰直角三角形,,以BC为边向外作等边三角形BCD,,连接AD交CE于点F,交BC于点G,过点C作交AB于点下列结论:;∽;;则正确的结论是______填序号三、解答题(共78分)19.(8分)如图,在直角坐标系中,点B的坐标为,过点B分别作x轴、y轴垂线,垂足分别是C,A,反比例函数的图象交AB,BC分别于点E,F.(1)求直线EF的解析式.(2)求四边形BEOF的面积.(3)若点P在y轴上,且是等腰三角形,请直接写出点P的坐标.20.(8分)甲、乙、丙三位同学在知识竞赛问答环节中,采用抽签的方式决定出场顺序.求甲比乙先出场的概率.21.(8分)如图,点D、E分别在的边AB、AC上,若,,.求证:∽;已知,AD::3,,求AC的长.22.(10分)如图,是的直径,是圆心,是圆上一点,且,是延长线上一点,与圆交于另一点,且.(1)求证:;(2)求的度数.23.(10分)一个四位数,记千位数字与个位数字之和为,十位数字与百位数字之和为,如果,那么称这个四位数为“对称数”最小的“对称数”为;四位数与之和为最大的“对称数”,则的值为;一个四位的“对称数”,它的百位数字是千位数字的倍,个位数字与十位数字之和为,且千位数字使得不等式组恰有个整数解,求出所有满足条件的“对称数”的值.24.(10分)如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BD=BC,将△AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设△AOB与△BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0<t≤2,2<t≤m,m<t<n时函数解析式不同).(1)点B的坐标为,点D的坐标为;(2)求S与t的函数解析式,并写出t的取值范围.25.(12分)佩佩宾馆重新装修后,有间房可供游客居住,经市场调查发现,每间房每天的定价为元,房间会全部住满,当每间房每天的定价每增加元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出元的各项费用.设每间房每天的定价增加元,宾馆获利为元.(1)求与的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的倍,此时每间房价为多少元时宾馆可获利元?26.某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).
参考答案一、选择题(每题4分,共48分)1、C【解析】设,,所以,易证,利用相似三角形的性质可求出的长度,以及,再证明,利用相似三角形的性质即可求出得出,从而可求出的长度.【详解】解:设,,∴,∵,∴,∴,∴,∴,,∵,,∴,∵,∴,∴,设,,∴,∴,∴,∴,故选C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.2、A【解析】试题分析:平分弦(不是直径)的直径垂直于弦,故B错误;长度和度数都相等的两条弧相等,故C错误;圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,故D错误;则本题选A.3、B【分析】过点O作OM⊥DE于点M,连接OD,根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的两条弧”和勾股定理进行计算,即可求出答案.【详解】过点O作OM⊥DE于点M,连接OD.∴DE=12∵DE=8cm,∴DM=4cm,在Rt△ODM中,∵OD=OC=5cm,∴OM=∴直尺的宽度为3cm.故答案选B.【点睛】本题主要考查了垂径定理和勾股定理,灵活运用这些定理是解答本题的关键.4、C【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.5、C【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A.既是中心对称图形,也是轴对称图形,故不符合题意;B.既是中心对称图形,也是轴对称图形,故不符合题意;C.是中心对称图形,但不是轴对称图形,故符合题意;D.不是中心对称图形,是轴对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.6、D【详解】根据切线长定理可知PA=PB,故①正确;同理可知CA=CE,可知CO为∠ACE的角平分线,所以∠ACO=∠DCO,故②正确;同理可知DE=BD,由切线的性质可知∠OBD=∠OED=90°,可根据四边形的内角和为360°知∠BOE+∠BDE=180°,即∠BOE和∠BDE互补,故③正确;根据切线长定理可得CE=CA,BD=DE,而△PCD的周长=PC+CD+PD=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=2PB,故④正确.故选D.7、B【分析】根据题目中函数解析式和二次函数的性质,可以逐一判断各选项即可.【详解】∵二次函数y=-x2+2x-3的图象开口向下,且以为对称轴的抛物线,A.当x>2,y随x的增大而减少,该选项错误;B.当x=2时,y有最大值-1,该选项正确;C.图像的顶点坐标为(2,-1),该选项错误;D.图像与x轴没有交点,该选项错误;故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值和顶点,关键是明确题意,利用二次函数的性质作答.8、D【详解】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,解得:r=1.故选D.9、B【分析】画出树状图,根据概率公式即可求得结果.【详解】画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选:B.【点睛】本题考查随机事件的概率计算,关键是要熟练应用树状图,属基础题.10、A【解析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可:①∵2>0,∴图象的开口向上,故本说法错误;②图象的对称轴为直线x=3,故本说法错误;③其图象顶点坐标为(3,1),故本说法错误;④当x<3时,y随x的增大而减小,故本说法正确.综上所述,说法正确的有④共1个.故选A.11、D【分析】根据必然事件的定义即可得出答案.【详解】ABC均为随机事件,D是必然事件,故答案选择D.【点睛】本题考查的是必然事件的定义:一定会发生的事情.12、B【解析】直接利用概率公式计算得出答案.【详解】共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,参赛同学抽到每一类别的可能性相同,小宇参赛时抽到“生态知识”的概率是:.故选B.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.二、填空题(每题4分,共24分)13、【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:点关于原点对称点是,则点的坐标为:故答案为:【点睛】本题考查的关于原点对称的点的坐标的问题.14、2024【分析】把代入方程得出的值,再整体代入中即可求解.【详解】把代入方程得:,即∴故填:2024.【点睛】本题考查一元二次方程的解法,运用整体代入法是解题的关键.15、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。16、﹣<a<【分析】根据题意可以知道抛物线与线段AB有一个交点,根据抛物线对称轴及其与y轴的交点即可求解.【详解】解:由题意可知:∵点A、B坐标分别为(0,1),(6,1),∴线段AB的解析式为y=1.机器人沿抛物线y=ax2﹣1ax﹣5a运动.抛物线对称轴方程为:x=2,机器人在运动过程中只触发一次报警,所以抛物线与线段y=1只有一个交点.所以抛物线经过点A下方.∴﹣5a<1解得a>﹣.1=ax2﹣1ax﹣5a,△=0即36a2+16a=0,解得a1=0(不符合题意,舍去),a2=.当抛物线恰好经过点B时,即当x=6,y=1时,36a﹣21a﹣5a=1,解得a=综上:a的取值范围是﹣<a<【点睛】本题考查二次函数的应用,关键在于熟悉二次函数的性质,结合图形灵活运用.17、1【分析】直接利用扇形弧长公式代入求出即可.【详解】解:扇形的半径是1,弧长是,,即,解得:,此扇形所对的圆心角为:.故答案为:1.【点睛】此题主要考查了弧长公式的应用,正确利用弧长公式是解题关键.18、②③④【分析】根据题意证明∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC即可证明②正确,①错误,在△AEF中利用特殊三角函数即可证明③正确,在Rt△AOC中,利用即可证明④正确.【详解】解:由题可知,∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC,∴∠ACD=150°,∴∠CDA=∠CAD=15°,∴∠FCG=∠BDG=45°,∴,②正确,①错误,∵易证∠FAE=30°,设EF=x,则AE=CE=,∴,③正确,设CH与AD交点为O,易证∠FCO=30°,设OF=y,则CF=2y,由③可知,EF=()y,∴AF=()y,在Rt△AOC中,.故②③④正确.【点睛】本题考查了相似三角形的判定,特殊的直角三角形,三角函数的简单应用,难度较大,熟知特殊三角函数值是解题关键.三、解答题(共78分)19、(1);(2)1;(3)点P的坐标为或.【分析】(1)点E与点B的纵坐标相同,点F与点B的横坐标相同,分别将y=1,x=2代入反比例函数解析式,可求出E、F的坐标,然后采用待定系数法即可求出直线EF的解析式;(2)利用即可求出答案;(3)设P点坐标为(0,m),分别讨论OP=OE,OP=PE,OE=PE三种情况,利用两点间的距离公式求出m即可得到P点坐标.【详解】解:(1)轴,轴,将代入,得将代入得:,设直线EF的解析式为把E、F的坐标代入解得∴直线EF的解析式为(2)由题意可得:=1(3)设P点坐标为(0,m),∵E(1,1),∴,,①当OP=OE时,,解得,∴P点坐标为或②当OP=PE时,,解得∴P点坐标为③当OE=PE时,,解得,当m=0时,P与原点重合,不符合题意,舍去,∴P点坐标为综上所述,点P的坐标为或【点睛】本题考查了反比例函数的图象与性质,待定系数法求一次函数解析式,以及等腰三角形的性质,熟练掌握待定系数法求函数解析式和两点间的距离公式并进行分类讨论是解题的关键.20、【分析】首先根据题意用列举法列出所有等可能的结果与甲比乙先出场的情况,再利用概率公式求解即可求得答案.【详解】解:甲、乙、丙三位同学采用抽签的方式决定出场顺序,所有可能出现的结果有:(甲,乙,丙)、(甲、丙、乙)(乙,甲,丙)、(乙,丙,甲)(丙,甲,乙)、(丙,乙,甲)共有6种,它们出现的可能性相同.所有的结果中,满足“甲比乙先出场”(记为事件)的结果有3中,所以【点睛】本题考查了列举法求概率,用到的知识点为:概率=所求情况数与总情况数之比.21、(1)证明见解析;(2)【分析】(1)根据三角形内角和证明即可证明三角形相似,(2)根据相似三角形对应边成比例即可解题.【详解】(1)证明:,(2)由得:【点睛】本题考查了相似三角形的判定和性质,中等难度,熟悉证明三角形相似的方法是解题关键.22、(1)见解析;(2)【分析】(1)连接,利用等腰三角形的性质证得,,再利用等角的关系得;(2)根据(1)可直接求得的度数.【详解】(1)如图,连接.,,,,.又,,,(2)由(1)得,.【点睛】此题考查圆的性质,等腰三角形的性质,题中依据连接OB是解题的关键.23、(1)1010;7979;(2)【分析】(1)根据最小的“对称数”1001,最大的“对称数”9999即可解答;(2)先解不等式组确定a的值,然后根据a和题意确定B,即可确定M.【详解】解:9999-2020=7979由得,由有四个整数解,得,又为千位数字,所以.设个位数字为,由题意可得,十位数字为,故,.故满足题设条件的为【点睛】本题考查新定义的概念,读懂题意,掌握据数的特点,确定字母a取值范围是解答本题的关键.24、(1)(2)当0<t≤2时,S=,当2<t≤5时,S=,当5<t<7时,S=t2﹣14t+1.【分析】(1)由图象可得当t=2时,点O与点B重合,当t=m时,△AOB在△BDC内部,可求点B坐标,过点D作DH⊥BC,可证四边形AOHD是矩形,可得AO=DH,AD=OH,由勾股定理可求BD的长,即可得点D坐标;(2)分三种情况讨论,由相似三角形的性质可求解.【详解】解:(1)由图象可得当t=2时,点O与点B重合,∴OB=1×2=2,∴点B(2,0),如图1,过点D作DH⊥BC,由图象可得当t=m时,△AOB在△BDC内部,∴4=×2×DH,∴DH=4,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,且DH⊥BC,∴∠ADH=∠DHO=90°,且∠AOB=90°,∴四边形AOHD是矩形,∴AO=DH,AD=OH,且AD=BC=BD,∴OH=BD,∵DB2=DH2+BH2,∴DB2=(DB﹣2)2+16,∴DB=5,∴AD=BC=OH=5,∴点D(5,4),故答案为:(2,0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政管理领域中典型问题分析试题及答案
- 2025版高考历史新探究大一轮复习第十六单元1第46讲中国古代历史上的改革模拟训练含2025届新题含解析岳麓版
- 二年级数学上册空间与图形例题精讲新人教版
- 新课改瘦专用2025版高考生物一轮复习第一单元第一讲组成细胞的元素及化合物讲义含解析
- 2024年高中物理第一章电磁感应微专题培优三电磁感应中的动力学和能量问题讲义含解析粤教版选修3-2
- JAVA编程规范与实践2025年计算机二级考试试题及答案
- 高效创建精美图像Photoshop试题及答案
- 软件测试与持续集成的最佳实践及试题及答案
- 商铺安装风扇合同协议书
- 装修物品售卖合同协议书
- 2023年云南省普通高中学业水平考试历史试卷附答案
- 高速公路横断面设计
- 教资面试 阅读课 全日语逐字稿 讲义
- 导截流验收报告汇编
- 大班科学《神奇的中草药》课件
- 信用修复申请书
- 全过程造价控制流程全图
- 温州7.23动车事故调查报告介绍课件
- RAL 劳尔色卡电子版
- 造价咨询质量控制保证措施及服务质量
- 跳棋教学(课堂PPT)
评论
0/150
提交评论