离子通道和神经元的电活动Neuronal-Electric-Activities课件_第1页
离子通道和神经元的电活动Neuronal-Electric-Activities课件_第2页
离子通道和神经元的电活动Neuronal-Electric-Activities课件_第3页
离子通道和神经元的电活动Neuronal-Electric-Activities课件_第4页
离子通道和神经元的电活动Neuronal-Electric-Activities课件_第5页
已阅读5页,还剩155页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NeuronalElectricActivities

神经元的电活动主讲教师刘风雨万有神经科学研究所、神经生物学系NeuronalElectricActivities

神NeuronalElectricActivitiesInclude:RestPotential

(Chapter3)ActionPotential(Chapter4)LocalPotentialsPost-SynapticPotentialExcitatoryPost-SynapticPotentialInhibitoryPost-SynapticPotentialEnd-platePotentialReceptorPotentialNeuronalElectricActivitiesIChapter3

TheNeuronalMembraneatRestTheCASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTheMOVEMENTOFIONSDiffusionElectricityTheIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3

TheNeuronalMembranCytosolandExtracellularFluidWater:Itsunevendistributionofelectricalcharge,soH2OisapolarmoleculeIons:SaltdissolvesreadilyinwaterbecausethechargedportionsofthewatermoleculehaveastrongerattractionfortheionsthantheyhaveforeachotherCytosolandExtracellularFluiThePhospholipidMembrane(磷脂膜)Thelipidsoftheneuronalmembraneforming:abarriertowater-solubleionsabarriertowater头端-极性磷酸盐-亲水尾端-非极性碳氢化合物-疏水5ThePhospholipidMembrane(磷脂膜ProteinTheseproteinsprovideroutesforionstocrosstheneuronalmembrane.Therestingandactionpotentialsdependonspecialproteinsthatspanthephospholipidbilayer.ProteinTheseproteinsprovideProtein–AminoAcidsProtein–AminoAcidsThePeptideBond(肽键)and

aPolypeptide(多肽)ThePeptideBond(肽键)and

aPFigure3.6ProteinStructureTheprimarystructureThesecondarystructureThetertiarystructureThequaternarystructureEachofthedifferentpolypeptidescontributingtoaproteinwithquaternarystructureiscalledasubunit(亚基).Figure3.6ProteinStructureThChannelProteinsChannelproteinissuspendedinaphospholipidbilayer,withitshydrophobic

(疏水的)portioninsidethemembranehydrophilic

(亲水的)endsexposedtothewateryenvironmentsoneithersideFigure3.7AMembraneIonChannel10ChannelProteinsChannelproteiTwoPropertiesofIonChannelsIonselectivity(离子选择性)ThediameteroftheporeThenatureoftheRgroupsliningitGating(门控特性)Channelswiththispropertycanbeopenedandclosed-gatedbychangesinthelocalmicroenvironmentofthemembraneTwoPropertiesofIonChannelsIonPumps(离子泵)IonpumpsareenzymesthatusetheenergyreleasedbythebreakdownofATPtotransportcertainionsacrossthemembraneIonPumps(离子泵)IonpumpsareeChapter3

TheNeuronalMembraneatRestTHECASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTHEMOVEMENTOFIONSDiffusionElectricityTHEIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3

TheNeuronalMembranTHEMOVEMENTOFIONSAchannelacrossamembraneislikeabridgeacrossariver.AnopenchannelAnetmovementofionsacrossthemembrane.Ionmovementrequiresthatexternalforcesbeappliedtodriveionsacross.Twofactorsinfluenceionmovementthroughchannels:Diffusion(扩散)Electricity

(电势差)THEMOVEMENTOFIONSAchannelDiffusionTemperature-dependentrandommovementofionsandmoleculestendstodistributetheionsevenlythroughoutthesolutionsothatthereisanetmovementofionsfromregionsofhighconcentrationtoregionsoflowconcentration.Thismovementiscalleddiffusion

(扩散).Adifferenceinconcentrationiscalledaconcentrationgradient

(浓度梯度).15DiffusionTemperature-dependentFigure3.8DiffusionDrivingionsacrossthemembranebydiffusionhappenswhenThemembranepossesseschannelspermeabletotheionsThereisaconcentrationgradientacrossthemembraneFigure3.8DiffusionDrivingioElectricityAnotherwaytoinduceanetmovementofionsinasolutionistouseanelectricalfield(电场),becauseionsareelectricallychargedparticles.Oppositechargesattractandlikechargesrepel.ElectricityAnotherwaytoinduFigure3.9

ThemovementofionsinfluencedbyanelectricalfieldOppositechargesattractandlikechargesrepelFigure3.9

ThemovementofioElectricityTwoimportantfactorsdeterminehowmuchcurrent(I)willflow:Electricalpotential(V,电势)Electricalconductance(g,电导)Electricalconductance

Electricalresistance(电阻,R=1/g)Ohm’slaw:I=gVElectricityTwoimportantfactoFigure3.10ElectricalcurrentflowacrossamembraneDrivinganionacrossthemembraneelectricallyrequiresThemembranepossesseschannelspermeabletotheionsThereisaelectricalpotentialdifferenceacrossthemembrane20Figure3.10ElectricalcurrentDiffusionandElectricityElectricalchargedionsinsolutiononeithersideoftheneuronalmembrane.(带电离子溶解在细胞膜两侧的溶液中)Ionscancrossthemembraneonlybyproteinchannel.(离子必须通过离子通道实现跨膜运动)Theproteinchannelscanbehighlyselectiveforspecificions.(离子通道对离子具有高度的选择性)Themovementofanyionthroughchanneldependsontheconcentrationgradientandthedifferenceinelectricalpotential

acrossthemembrane.(离子的跨膜运动依赖于膜两侧的浓度梯度和电位差)DiffusionandElectricityElectChapter3

TheNeuronalMembraneatRestTheCASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTheMOVEMENTOFIONSDiffusionElectricityTheIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3

TheNeuronalMembranThemembranepotential(膜电位)isthevoltageacrosstheneuronalmembraneatanymoment,representedbythesymbolmV.Microelectrode(微电极)andmVmeasurementTHEIONICBASISOFTHERESTINGMEMBRANEPOTENTIAL(静息电位)Themembranepotential(膜电位)iEstablishingEquilibriumPotential(平衡电位)Figure3.12EstablishingequilibriuminaselectivelypermeablemembraneNopotentialdifferenceVm=0mVThediffusionalforce=TheelectricalforceVm=-80mV20:1EstablishingEquilibriumPotenEquilibriumpotentialsTheelectricalpotentialdifferencethatexactlybalancesanionicconcentrationgradientiscalledanionicequilibriumpotential,orsimplyequilibriumpotential

(当离子移动所产生的电位差和离子移动所造成的浓度势能差平衡时,不再有离子的净移动,这时膜两侧的电位差称为离子的平衡电位)Generatingasteadyelectricalpotentialdifferenceacrossamembranerequires

Anionicconcentrationgradient

Selectiveionicpermeability25EquilibriumpotentialsTheelecBeforemovingontothesituationinrealneurons,fourimportantpointsshouldbemade:Largechangesinmembranepotentialarecausedbyminusculechangesinionicconcentrations(仅需要微小的离子浓度改变就可以引起膜电位大幅度的变化)100mM99.99999mMVm=-80mVVm=0mVBeforemovingontothesituatBeforemovingontothesituationinrealneurons,fourimportantpointsshouldbemade:2.Thenetdifferenceinelectricalchargeoccursattheinsideandoutsidesurfacesofthemembrane(膜内外两侧电荷的不同仅仅分布于膜的内外侧面,而不是分布于整个细胞的内外液)Figure3.13(5nm)BeforemovingontothesituatBeforemovingontothesituationinrealneurons,fourimportantpointsshouldbemade:Ionsaredrivenacrossthemembraneatarateproportionaltothedifferencebetweenthemembranepotentialandtheequilibriumpotential(离子的跨膜速率与膜电位和平衡电位的差值成正比).NetmovementofK+occursasthemembranepotentialdifferedfromtheequilibriumpotential.Thisdifference(Vm-Eion)iscalledtheionicdrivingforce(离子驱动力).Iftheconcentrationdifferenceacrossthemembraneisknownforanion,anequilibriumpotentialcanbecalculatedforthation(根据某离子膜两侧浓度的差值可以计算该离子的平衡电位).BeforemovingontothesituatNa+EquilibriumPotentialFigure3.14AnotherexampleestablishingequilibriuminaselectivelypermeablemembraneNa+EquilibriumPotentialFiguTheNernstEquationTheexactvalueofanequilibriumpotentialinmVcanbecalculatedusingtheNernstequation,whichtakesintoconsideration:ThechargeoftheionThetemperatureTheratiooftheexternalandinternalionconcentrationsPage64.Box3.2.MarkF.Bear,etal.ed.Neuroscience:ExploringtheBrain.2ndedition.EK=2.303log

30TheNernstEquationTheexactvFigure3.15Figure3.15Approximateionconcentrationsoneithersideofaneuronalmembrane.Figure3.15Figure3.15RelativeIonPermeabilitiesofMembraneatRestTherestingmembranepermeabilityisfortytimesgreatertoK+thantoNa+Therestingmembranepotentialis–65mVRelativeIonPermeabilitiesofTheDistributionofIonsAcrosstheMembraneIonicconcentrationgradientsareestablishedbytheactionsofionspumpsintheneuronalmembrane(膜内外两侧的离子浓度梯度的形成依赖于离子泵的活动)Twoimportantionpumps:Thesodium-potassiumpump(钠钾泵)isanenzymethatbreaksdownATPinthepresenceofinternalNa+.Thecalciumpump(钙泵)isanenzymethatactivelytransportsCa2+outofthecytosolacrossthecellmembrane.TheDistributionofIonsAcrosFigure3.16Figure3.16Thesodium-potassiumpump.K+K+Na+Na+Figure3.16Figure3.16ThesoFigure4.4Membranecurrentsandconductances35Figure4.4MembranecurrentsanThemostpotassiumchannelshavefoursubunitsthatarearrangedlikethestavesofabarreltoformaporeOfparticularinterestisaregioncalledtheporeloop(孔袢),whichcontributestotheselectivityfilterthatmakesthechannelpermeablemostlytoK+ions.ThewideworldofpotassiumchannelsThemostpotassiumchannelshaFigure3.18Figure3.18AviewoftheatomicstructureofthepotassiumchannelporeFigure3.18Figure3.18TheimportanceofregulatingtheexternalpotassiumconcentrationIncreasingextracellularpotassiumdepolarizesneuronsFigure3.19Thedependenceofmembranepotentialonexternalpotassiumconcentration.550-65-17TheimportanceofregulatingtTwoprotectivemechanismsinthebrainBlood-brainbarrier(血脑屏障)limitsthemovementofpotassium(andotherblood-bornesubstances)intotheextracellularfluidofthebrainGlia,particularlyastrocytes,takeupextracellularK+wheneverconcentrationsrise,astheynormallydoduringperiodsofneuralactivity.TwoprotectivemechanismsintFigure3.20Figure3.20Potassiumspatialbufferingbyastrocytes.Whenbrain[K+]oincreasesasaresultoflocalneuralactivity,K+entersastrocytesviamembranechannels.TheextensivenetworkofastrocyticprocesseshelpsdissipatetheK+overalargearea.40Figure3.20Figure3.2040Chapter3

TheNeuronalMembraneatRestTheCASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTheMOVEMENTOFIONSDiffusionElectricityTheIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3

TheNeuronalMembranNeuronalElectricActivitiesInclude:RestPotential(Chapter3)ActionPotential(Chapter4)LocalPotentialsPost-SynapticPotentialExcitatoryPost-SynapticPotentialInhibitoryPost-SynapticPotentialEnd-platePotentialReceptorPotentialNeuronalElectricActivitiesIChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaMethodsofRecordingActionPotentials细胞内记录细胞外记录示波器MethodsofRecordingActionPoTheUpsandDownsofanActionPotentials上升支(去极化)下降支(复极化)超射超极化激活后电位2ms-65mV45TheUpsandDownsofanActionGenerationofanactionpotentialTheperceptionofsharppainwhenathumbtackentersyourfootiscausedbythegenerationofactionpotentialsincertainnervefibersintheskin:Thethumbtackenterstheskin(图钉扎入皮肤)Themembraneofthenervefibersintheskinisstretched(感觉神经纤维的细胞膜被牵拉)Na+-permeablechannelsopen.TheentryofNa+depolarizesthemembrane(Na+通道打开,细胞膜产生去极化)Thecriticallevelofdepolarizationthatmustbecrossedinordertotriggeranactionpotentialiscalledthreshold(阈电位).Actionpotentialarecausedbydepolarizationofthemembranebeyondthreshold.GenerationofanactionpotentThedepolarizationthatcausesactionpotentialarisesindifferentwaysindifferentneurons

(引起去极化的不同方式):CausedbytheentryofNa+throughspecializedionchannelsthatsensitivetomembranestretching

(膜的牵拉)Ininterneurons,depolarizationisusuallycausedbyNa+entrythroughchannelsthataresensitivetoneurotransmitters(神经递质的释放)

releasedbyotherneurons3.Inadditiontothesenaturalroutes,neuronscanbedepolarizedbyinjectingelectricalcurrent(注入电流)throughamicroelectrode,amethodcommonlyusedbyneuroscientiststostudyactionpotentialsindifferentcells. Applyingincreasingdepolarizationtoaneuronhasnoeffectuntilitcrossesthreshold,andthen“pop”–oneactionpotential.Forthisreason,actionpotentialsaresaidtobe“all-or-none”(全或无现象).ThedepolarizationthatcausesThegenerationofmultipleactionpotentialsContinuousdepolarizingcurrentManyactionpotentialsinsuccession注入电流ThegenerationofmultipleactThefiringfrequencyofactionpotentialsreflectsthemagnitudeofthedepolarizingcurrent

(频率反应去极化电流的大小)Thisisonewaythatstimulationintensityisencodedinthenervoussystem(中枢神经系统编码刺激强度的一种方式)ThefiringfrequencyofactionThoughfiringfrequencyincreaseswiththeamountofdepolarizingcurrent,thereisalimittotherateatwhichaneuroncangenerateactionpotentials.Absoluterefractoryperiod(绝对不应期)Onceanactionpotentialisinitiated,itisimpossibletoinitiateanotherforabout1ms(动作电位产生后1ms,不可能产生别的动作电位)Relativerefractoryperiod(相对不应期)Theamountofcurrentrequiredtodepolarizetheneurontoactionpotentialthresholdiselevatedabovenormal(绝对不应期之后的几个ms,需要比正常更大的阈电流才能爆发动作电位)50ThoughfiringfrequencyincreaChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaTHEACTIONPOTENTIALINTHEORYDepolarizationofthecellduringtheactionpotentialiscausedbytheinfluxofsodiumionsacrossthemembrane(去极化是钠离子内流造成的)Repolarizationiscausedbytheeffluxofpotassiumions(复极化是钾离子外流造成的)THEACTIONPOTENTIALINTHEORYTheInsandOutsofActionPotentialTherisingphase

AverylargedrivingforceonNa+

(-80-62)mV=-142mV

ThemembranepermeabilitytoNa+

>K+Depolarizationofthemembranebeyondthreshold,membranesodiumchannelsopened.ThiswouldallowNa+toentertheneuron,causingamassivedepolarizationuntilthemembranepotentialapproachedENa.Thefallingphase

ThedominantmembraneionpermeabilitytoK+K+flowoutofthecelluntilthemembranepotentialapproachedEK.TheInsandOutsofActionPotTheinsandoutsandupsanddownsoftheactionpotentialinanidealneuronisshownasbelow:(Fig4.5)Theinsandoutsandupsandd5555Chapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaVoltageclamp(电压钳)provestheabovetheory:Voltageclamp(电压钳)provestheTheVoltage-GatedSodiumChannel

(电压门控的钠离子通道)TheproteinformsaporeinthemembranethatishighlyselectivetoNa+ions(对Na+具有高度的选择性).Theporeisopenedandclosedbychangesintheelectricalpotentialofthemembrane(Na+通道的开放和关闭具有电压依从性).TheVoltage-GatedSodiumChannSodiumchannelstructure

(Na+通道的结构)CreatedfromasinglelongpolypeptideHas4distinctdomains,numberedI-IV.ThefourdomainsarebelievedtoclumptogethertoformaporebetweenthemEachdomainconsistsof6transmembranealphahelices,numberedS1-S6Thechannelhasporeloopsthatareassembledintoaselectivityfilter60Sodiumchannelstructure

(Na+Figure4.6Structureofthevoltage-gatedsodiumchannel(a)Howthesodiumchannelpolypeptidechainisbelievedtobewovenintothemembrane.Themoleculeconsistsoffourdomains,I-IV.Eachdomainconsistsof6alphahelices,whichpassbackandforthacrossthemembraneFigure4.6Figure4.6(b)AnexpandedviewofonedomainshowingthevoltagesensorofalphahelixS4andtheporeloop(red),whichcontributestotheselectivityfilter(c)Aviewofthemoleculeshowinghowthedomainsmayarrangethemselvestoformaporebetweenthem.电压感受器Figure4.6(b)AnexpandedviewFigure4.7Whenthemembraneisdepolarizedtothreshold,themoleculetwistsintoaconfigurationthatallowsthepassageofNa+throughthepore.

ThevoltagesensorresidesinsegmentS4ofthemolecule.Inthissegment,positivelychargedaminoacidresiduesareregularlyspacedalongthecoilsofthehelix.

Thus,theentiresegmentcanbeforcedtomovebychangingthemembranepotential.DepolarizationpushesS4awayfromtheinsideofthemembrane,andthisconformationalchangeinthemoleculecausesthegatetoopen.Figure4.7WhenthemembraneisThepatch-clamp(膜片钳)Method-40mV65Thepatch-clamp(膜片钳)Method-Functionalpropertiesofthesodiumchannel(Na+通道的功能)TheyopenwithlittledelayTheystayopenforabout1msandthenclose(inactivate)Theycannotbeopenedagainbydepolarizationuntilthemembranepotentialreturnsto–65mV关闭开放失活去失活FunctionalpropertiesofthesFunctionalpropertiesofthesodiumchannelFigure4.9(c)Amodelforhowchangesintheconformationofthesodiumchannelproteinmightyielditsfunctionalproperties.Theclosed(关闭)channel;

Opens(开放)uponmembranedepolarization;

Inactivation(失活)occurswhenaglobularportionoftheproteinswingsupandoccludesthepore;

Deinactivation(去失活)occurswhentheglobularportionswingsawayandtheporeclosesbymovementofthetransmembranedomains关闭开放失活去失活FunctionalpropertiesofthesToxinsonthesodiumchannelTetrodotoxin(TTX,河豚毒素)andsaxitoxinChannel-blockingtoxinBatrachotoxin,veratridineandaconitineOpenthechannelsinappropriatelyOpenatmorenegativepotentialsOpenmuchlongerthanusualToxinsonthesodiumchannelTePuttingthePiecesTogether(page89)ThresholdRisingphaseOvershootFallingphaseUndershootAbsoluterefractoryperiodRelativerefractoryperiodPuttingthePiecesTogether(pFigure4.10Themolecularbasisoftheactionpotential70Figure4.10ThemolecularbasiChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaFigure4.11ActionpotentialconductionFigure4.11Actionpotentialconduction.Theentryofpositivechargeduringtheactionpotentialcausesthemembranejustaheadtodepolarizetothreshold(已经兴奋的膜部分通过局部电流“刺激”了未兴奋的膜部分,使之出现动作电位)AnactionpotentialpropagatesinonedirectionAnactionpotentialcanbegeneratedbydepolarizationateitherendoftheaxonandthereforepropagateineitherdirectionFigure4.11ActionpotentialcFactorsInfluencingConductionVelocityActionpotentialconductionvelocityincreaseswithincreasingaxonaldiameter(轴突的直径)Axonalsizeandthenumberofvoltage-gatedchannelsinthemembranealsoaffectaxonalexcitability(轴突上钠离子通道的密度).Temperature

(温度)FactorsInfluencingConductionMyelinandSaltatoryConductionMyelin(髓鞘)SchwanncellsintheperipheralnervoussystemOligodendrogliainthecentralnervoussystemVoltage-gatedsodiumchannelsareconcentratedinthemembraneofthenodesofRanvier(郎飞结)Inmyelinatedaxones,actionpotentialsskipfromnodetonode(Saltatoryconduction跳跃式传导)MyelinandSaltatoryConductioMyelinandSaltatoryConductionInmyelinatedaxones,actionpotentialsskipfromnodetonode(Saltatoryconduction)75MyelinandSaltatoryConductioChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaSpike-initiationzoneOnlymembranethatcontains

voltage-gatedsodiumchannelsiscapableofgeneratingactionpotential.Voltage-gatedsodiumchannels

Theaxons>ThedendritesTheaxons>ThecellbodiesThepartoftheneuronwhereanaxonoriginatesfromthesoma,theaxonhillock(轴丘),isoftenalsocalledthespike-initiationzone(动作电位起始点).Spike-initiationzoneOnlymembFigure4.14MembraneproteinspecifythefunctionofdifferentpartsoftheneuronAcorticalpyramidalneuronAprimarysensoryneuronFigure4.14MembraneproteinsChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaNeuronalElectricActivitiesInclude:RestPotential(Chapter3)ActionPotential(Chapter4)LocalPotentialsPost-SynapticPotentialExcitatoryPost-SynapticPotentialInhibitoryPost-SynapticPotentialEnd-platePotentialReceptorPotential80NeuronalElectricActivitiesIKEYTERMSANDREVIEWQUESTIONSP72andP97KEYTERMSANDREVIEWQUESTIONSThanksThanksNeuronalElectricActivities

神经元的电活动主讲教师刘风雨万有神经科学研究所、神经生物学系NeuronalElectricActivities

神NeuronalElectricActivitiesInclude:RestPotential

(Chapter3)ActionPotential(Chapter4)LocalPotentialsPost-SynapticPotentialExcitatoryPost-SynapticPotentialInhibitoryPost-SynapticPotentialEnd-platePotentialReceptorPotentialNeuronalElectricActivitiesIChapter3

TheNeuronalMembraneatRestTheCASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTheMOVEMENTOFIONSDiffusionElectricityTheIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3

TheNeuronalMembranCytosolandExtracellularFluidWater:Itsunevendistributionofelectricalcharge,soH2OisapolarmoleculeIons:SaltdissolvesreadilyinwaterbecausethechargedportionsofthewatermoleculehaveastrongerattractionfortheionsthantheyhaveforeachotherCytosolandExtracellularFluiThePhospholipidMembrane(磷脂膜)Thelipidsoftheneuronalmembraneforming:abarriertowater-solubleionsabarriertowater头端-极性磷酸盐-亲水尾端-非极性碳氢化合物-疏水5ThePhospholipidMembrane(磷脂膜ProteinTheseproteinsprovideroutesforionstocrosstheneuronalmembrane.Therestingandactionpotentialsdependonspecialproteinsthatspanthephospholipidbilayer.ProteinTheseproteinsprovideProtein–AminoAcidsProtein–AminoAcidsThePeptideBond(肽键)and

aPolypeptide(多肽)ThePeptideBond(肽键)and

aPFigure3.6ProteinStructureTheprimarystructureThesecondarystructureThetertiarystructureThequaternarystructureEachofthedifferentpolypeptidescontributingtoaproteinwithquaternarystructureiscalledasubunit(亚基).Figure3.6ProteinStructureThChannelProteinsChannelproteinissuspendedinaphospholipidbilayer,withitshydrophobic

(疏水的)portioninsidethemembranehydrophilic

(亲水的)endsexposedtothewateryenvironmentsoneithersideFigure3.7AMembraneIonChannel10ChannelProteinsChannelproteiTwoPropertiesofIonChannelsIonselectivity(离子选择性)ThediameteroftheporeThenatureoftheRgroupsliningitGating(门控特性)Channelswiththispropertycanbeopenedandclosed-gatedbychangesinthelocalmicroenvironmentofthemembraneTwoPropertiesofIonChannelsIonPumps(离子泵)IonpumpsareenzymesthatusetheenergyreleasedbythebreakdownofATPtotransportcertainionsacrossthemembraneIonPumps(离子泵)IonpumpsareeChapter3

TheNeuronalMembraneatRestTHECASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTHEMOVEMENTOFIO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论