下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——三角形重心坐标公式证明3篇
三角形重心坐标公式证明3篇
三角形重心坐标公式证明篇1
例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。
求证:EG=1/2CG
证明:过E作EH∥BF交AC于H。
∵AE=BE,EH//BF
∴AH=HF=1/2AF(平行线分线段成比例定理)
又∵AF=CF
∴HF=1/2CF
∴HF:CF=1/2
∵EH∥BF
∴EG:CG=HF:CF=1/2
∴EG=1/2CG
方法二连接EF
利用三角形好像
求证:EG=1/2CG即证明EF=1/2BC
利用中位线可证明EF=1/2BC利用中位线可证明EF=1/2BC
三角形重心坐标公式证明篇2
证明方法:
在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA"、BOB"、COC"分别为a、b、c边上的中线。根据重心性质知:
OA"=1/3AA"
OB"=1/3BB"
OC"=1/3CC"
过O,A分别作a边上高OH",AH
可知OH"=1/3AH
那么,S△BOC=1/2×OH"a=1/2×1/3AHa=1/3S△ABC
同理可证S△AOC=1/3S△ABC
S△AOB=1/3S△ABC
所以,S△BOC=S△AOC=S△AOB
在三角形ABC中,向量BO与向量BF共线,故可设BO=xBF
根据三角形加法法那么:向量AO=AB+BO
=a+xBF=a+x(AF-AB)
=a+x(b/2-a)=(1-x)a+(x/2)b
向量CO与向量CD共线,故可设CO=yCD,
根据三角形加法法那么:向量AO=AC+CO
=b+yCD=b+y(AD-AC)
=b+y(a/2-b)=(y/2)a+(1-y)b.
所以向量AO=(1-x)a+(x/2)b=(y/2)a+(1-y)b
那么1-x=y/2,x/2=1-y,
解得x=2/3,y=2/3.
向量BO=2/3BF,向量CO=2/3CD
即BO:OF=CO:OD=2。
∴向量AO=(y/2)a+(1-y)b=1/3a+1/3b
又因向量AE=AB+BE=a+1/2BC=a+1/2(AC-AB)
三角形重心坐标公式证明篇3
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。
求证:F为AB中点.三角形重心
证明:根据燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再应用燕尾定理即得AF=BF,命题得证。
1、重心到顶点的距离与重心到对边中点的距离之比为2:1.
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,
(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标(Z1+Z2+Z3)/3
5、重心和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国露营行业发展前景及竞争趋势分析研究报告(2024-2030版)
- 中国铌钽市场运营能力预测与投资盈利专项可行性研究报告(2024-2030版)
- 中国金属型压铸机行业现状动态及未来趋势预测研究报告(2024-2030版)
- 中国证券业兼并重组行业经营状况及发展策略分析研究报告(2024-2030版)
- 中国自耦变压器行业发展趋势及应用前景预测研究报告(2024-2030版)
- 2024年中国楼宇对讲设备市场调查研究报告
- 中国聚丙烯膜电容器行业应用趋势及前景动态预测研究报告(2024-2030版)
- 中国硬酯酸行业市场现状分析及竞争格局与投资发展研究报告(2024-2030版)
- 中国番泻叶供需状况及市场规模预测分析研究报告(2024-2030版)
- 中国电抗器行业现状趋势及应用前景预测研究报告(2024-2030版)
- 公文写作智慧树知到期末考试答案章节答案2024年广州大学
- 人教版五年级数学上册第一单元《小数乘法》(大单元教学设计)
- 家庭约法三章合同
- 特种设备使用单位日管控、周排查、月调度示范表
- 职业生涯规划概述课件
- JB-T 14320-2022 氧气用止回阀
- 《两办意见》(关于进一步加强矿山安全生产工作的意见)培训课件2024
- 人教版初中化学实验目录(总表)
- 监控工程验收单-范本模板
- 机械设计产品案例分析报告
- 政治审查表(模板)
评论
0/150
提交评论