2022年广东省中考数学 二模试题【第3套】(解析版)_第1页
2022年广东省中考数学 二模试题【第3套】(解析版)_第2页
2022年广东省中考数学 二模试题【第3套】(解析版)_第3页
2022年广东省中考数学 二模试题【第3套】(解析版)_第4页
2022年广东省中考数学 二模试题【第3套】(解析版)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年广东省中考数学二模试题3数学试卷一、选择题1.计算20的结果是()A.0 B.1 C.2 D.【答案】B【解析】【分析】根据:a0=1(a≠0)可得结论.【详解】解:20=1,故选:B.【点睛】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.(a+b)2=a2+b2C.a2b2=(ab)4 D.(a3)2=a6【答案】D【解析】【分析】直接利用完全平方公式以及积的乘方、幂的乘方运算法则分别判断得出答案.【详解】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点睛】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式【答案】D【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点睛】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【答案】D【解析】【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】∵分式的值为0,∴x2-1=0,解得:x=±1.故选D.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.5.解方程时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1 B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6 D.3(x﹣5)+2x﹣1=6【答案】C【解析】【分析】根据一元一次方程的解法即可求出答案.【详解】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点睛】本题考查了一元一次方程的解法,解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.6.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1 B.y= C.y=﹣2x2+1 D.y=2x【答案】D【解析】【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点睛】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD的面积为6,四边形CDEF的面积为4,则AC=()A. B. C. D.【答案】C【解析】【分析】根据四边形CDEF是正方形,即可得出CD==2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【详解】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD==2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC==,故选:C.【点睛】本题主要考查了折叠问题,矩形的性质,以及勾股定理,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC【答案】B【解析】【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【详解】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点睛】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似.9.在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A. B.C. D.【答案】D【解析】【分析】具体折一折,从中发挥想象力,可得正确的答案.【详解】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点睛】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】A【解析】【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】解:①当k>0时,y=kx﹣k过一、三、四象限;y=过一、三象限;②当k<0时,y=kx﹣k过一、二、四象象限;y=过二、四象限.观察图形可知,只有A选项符合题意.故选:A.【点睛】本题主要考查了反比例函数图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.二、填空题11.计算:6ab2÷3ab=_____.【答案】2b【解析】【分析】根据单项式的除法法则即可求出答案.【详解】解:原式=2b,故答案为:2b【点睛】本题考查了单项式的除法,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.12.不等式组的解集是_____.【答案】x>0【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=_____.【答案】15【解析】【分析】根据平行线分线段成比例解答即可.【详解】解:∵AE∥BD,CD=20,CE=36,AC=27,∴,即,解得:BC=15,故答案为:15【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.14.某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是_____.【答案】0.28【解析】【分析】直接利用5各小组的频率之和为1,进而得出答案.【详解】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点睛】此题主要考查了频率意义,正确得出第4组和第5组的频率和是解题关键.15.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了__________道题.【答案】19【解析】【分析】设他做对了x道题,则小英做错了(25-x)道题,根据总得分=4×做对的题数-1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设他做对了x道题,则他做错了(25-x)道题,根据题意得:4x-(25-x)=70,解得:x=19,故答案为:19.【点睛】本题考查了一元一次方程的应用,根据总得分=4×做对的题数-1×做错的题数列出关于x的一元一次方程是解题的关键.16.如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是_____.【答案】【解析】【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【详解】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=BE=1,AH=AB=2,∴BG=,BH=2,GH=,∴DH=2,DG=3,∴Rt△DEG中,DE===2,故答案为:2.【点睛】本题主要考查了最短路线问题,以及勾股定理,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题17.计算:.【答案】﹣3【解析】【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【详解】解:原式=2×﹣(﹣2)﹣6=1+2﹣6=﹣3.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.如图,在ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.【答案】证明:在ABCD中,AD=BC且AD∥BC,∵BE=FD,∴AF=CE。∴四边形AECF是平行四边形【解析】试题分析:根据平行四边形的性质可得AF∥EC.AF=EC,然后根据平行四边形的定义即可证得.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF∥EC,AF=EC,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证出AF=EC是解决问题的关键.【此处有视频,请去附件查看】19.已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求的值.【答案】5【解析】【分析】利用平方差公式可将原式化简成a+b,再根据方程的系数结合根的判别式可得出a+b=5,此题得解.【详解】解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.【点睛】本题考查了根与系数的关系,分式的减法,以及平方差公式,利用平方差公式将原式化简成a+b是解题的关键.20.现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份折线统计图.用表示5月份的方差;用表示3月份的方差,比较大小:;比较3月份与5月份,月份的更稳定.【答案】(1)详见解析;(2)3;(3)<,3.【解析】【分析】(1)最低气温14℃的有3天,据此补充频数分布直方图;

(2)3月13日与10日这两天的最低气温之差是15-12=3(℃);

(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S52,3月份更稳定.【详解】解:(1)最低气温14℃的有3天,所以补充频数分布直方图如下:(2)3月13日与10日这两天最低气温之差是15﹣12=3(℃),故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S52,3月份更稳定,故答案为:<,3.【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)【答案】(1)当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【解析】【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【详解】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=240,∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.某校初三(1)班综合实践小组去某地测量人工湖长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)【答案】10+20米.【解析】【分析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.【详解】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠FAB=60°,AB=20,∴AF=ABcos∠FAB=20×=10.在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BCcos∠EBC=40×=20.在矩形BEDF中,FD=BE=20,∴AD=AF+FD=10+20.答:AD的长为(10+20)米.【点睛】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.【答案】(1)直线l与x轴的交点N的坐标为(8,0);(2)4;(3)直线AB与y轴的交点为(0,).【解析】【分析】(1)令y=0,得kx﹣8k=0,解出即可;(2)作OD⊥AB,垂足为D.可知点O到直线AB的距离为线段OD的长度,利用勾股定理可得OD的长;(3)介绍两种方法:方法一,先根据勾股定理计算DN的长,证明Rt△OMD∽Rt△NOD,列比例式求OM的长,可得结论;方法二:先得∠OND=30°.根据30度的正切列式可得OM的长,可得结论.【详解】解:(1)令y=0,得kx﹣8k=0,∵k≠0,解得x=8,∴直线l与x轴的交点N的坐标为(8,0).(2)连接OB,过点O作OD⊥AB,垂足为D.∴点O到直线AB的距离为线段OD的长度,∵⊙O的半径为5,∴OB=5.又∵AB=6,∴BD=AB==3.在Rt△OBD中,∵∠ODB=90°,∴OD===4.答:点O到直线AB的距离为4.(3)由(1)得N的坐标为(8,0),∴ON=8.由(2)得OD=4.方法一:∴在Rt△ODN中,DN===4.又∵∠OMD+∠MOD=90°,∠NOD+∠MOD=90°,∴∠OMD=∠NOD.∵∠ODM=∠ODN,∴Rt△OMD∽Rt△NOD,∴.∴OM=•NO=×8=.∴直线AB与y轴的交点为(0,).方法二:∴在Rt△OND中,sin∠OND==.∴∠OND=30°.∵在Rt△OMN中,tan30°=∴OM=ON•tan∠OND,∴OM=8tan30°=.∴直线AB与y轴的交点为(0,).【点睛】此题考查了一次函数的综合题,考查了待定系数法和解直角三角形,三角形相似的性质和判定,同时也利用了垂径定理和勾股定理解决问题,难度适中.24.如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:)【答案】(1)a=﹣,b=,c=3;(2)△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度,可使点E与点B重合,当点E与点B重合时,点F的坐标为(3﹣3,﹣3);(3)把△DEF沿x轴负方向(向左)平移(3﹣3)或(9+)个单位长度,可使⊙E与直线AC和BC均相切.【解析】【分析】(1)通过解直角三角形可求出点A,B,C的坐标,根据点A,B,C的坐标,利用待定系数法可求出a,b,c的值;(2)求出当等腰直角△DEF的直角顶点F在y轴负半轴时点E,F的坐标,结合点B的坐标可得出将△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度可使点E与点B重合,再结合点F的坐标即可得出平移后点F的坐标;(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,分两种情况考虑:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,则四边形Q1CR1P1是正方形,设Q1C=CR1=R1P1=P1Q1=r1,在Rt△P1R1B中通过解直角三角形BR1=r1,进而可得出BC=(+1)r1,结合BC=6可求出r1的值,由BR1=r1,结合OP1=OB﹣BP1可求出点P1的坐标,再结合点E的坐标即可得出把△DEF沿x轴负方向(向左)平移(3﹣3)个单位长度可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,则四边形Q2CR2P2是正方形,同理,可求出点P2的坐标,再结合点E的坐标即可得出把△DEF沿x轴负方向(向左)平移(9+3)个单位长度可使⊙E与直线AC和BC均相切.综上,此题得解.【详解】解:(1)在Rt△ABC中,∠CAB=60°,∠ACB=90°,BC=6,∴∠ABC=30°,OC=BC•sin∠ABC=6×sin30°=3,∴点C的坐标为(0,3);在Rt△COB中,OC=3,∠OBC=30°,∴OB=OC•cot∠OBC=3×cot30°=3,∴点B的坐标为(3,0);在Rt△AOC中,OC=3,∠CAO=60°,∴AO=OC•cot∠CAO=3×cot60°=,∴点A的坐标为(﹣,0).将A(﹣,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴a=﹣,b=,c=3.(2)当等腰直角△DEF的直角顶点F在y轴负半轴时,∵DE=6,∴OE=OF=DE=×6=3,∴点F起始位置的坐标为(0,﹣3),点E起始位置的坐标为(3,0).∵点B的坐标为(3,0),∴BE=OB﹣OE=3﹣3,∴△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度,可使点E与点B重合,∴当点E与点B重合时,点F的坐标为(3﹣3,﹣3).(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,有两种情况:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,如图③所示.∵∠ACB=90°,∴四边形Q1CR1P1是矩形.∵⊙P1与AC、BC相切于点Q1、R1,∴R1P1=P1Q1,∴矩形Q1CR1P1是正方形.设Q1C=CR1=R1P1=P1Q1=r1,∴在Rt△P1R1B中,BR1=R1P1cot∠CBA=r1cot30°=r1,∴BC=CR1+BR1=r1+r1=(+1)r1,又∵BC=6,∴(+1)r1=6,∴r1===3(﹣1)=3﹣3.∴P1B=2R1P1=2r1=2(3﹣3)=6﹣6,∴OP1=OB﹣BP1=3﹣(6﹣6)=6﹣3,∴P1的坐标为(6﹣3,0).∵OE=3,∴EP1=OE﹣OP1=3﹣(6﹣3)=3﹣3,∴把△DEF沿x轴负方向(向左)平移(3﹣3)个单位长度,可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,如图④所示.∵∠ACB=90°,∴∠R2CQ2=90°,∵⊙P2与AC、BC相切于点Q2、R2,∴矩形Q2CR2P2是正方形.设Q2C=CR2=R2P2=P2Q2=r2,∴在Rt△P2R2B中,BR2=R2P2cot∠CBA=r2cot30°=r2,∴BC=BR2﹣CR2=r2﹣r2=(﹣1)r2,又∵BC=6,∴(﹣1)r2=6,∴r2===3(+1)=3+3,∴P2B=2R2P2=2r2=2(3+3)=6+6,∴OP2=BP2﹣OB=6+6﹣3=6+3,∴P2的坐标为(﹣6﹣3,0).∵OE=3,OP2=6+3,∴EP2=OE+OP2=3+(6+3)=9+3,∴把△DEF沿x轴负方向(向左)平移(9+3)个单位长度,可使⊙E与直线AC和BC均相切.综上所述,把△DEF沿x轴负方向(向左)平移(3﹣3)或(9+3)个单位长度,可使⊙E与直线AC和BC均相切.【点睛】本题考查了解直角三角形、待定系数法求二次函数解析式、等腰直角三角形、正方形的判定与性质以及平移的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出a,b,c的值;(2)利用等腰直角三角形的性质求出点E,F的坐标;(3)分两种情况求出点P的坐标(即点E移动到的位置).25.已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论