版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米2.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.23.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.94.抛物线经过第一、三、四象限,则抛物线的顶点必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列运算结果是无理数的是()A.3× B. C. D.6.计算的结果是()A.a2 B.-a2 C.a4 D.-a47.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是()A.0 B.1 C. D.8.如果,那么代数式的值是()A.6 B.2 C.-2 D.-69.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A. B.3cm C. D.9cm10.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17二、填空题(共7小题,每小题3分,满分21分)11.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是_____m.(2).一个多边形的每一个内角都是与它相邻外角的3倍,则多边形是_____边形.12.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.13.如图,在边长为1的正方形格点图中,B、D、E为格点,则∠BAC的正切值为_____.14.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.15.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.17.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____°.三、解答题(共7小题,满分69分)18.(10分)在正方形ABCD中,M是BC边上一点,且点M不与B、C重合,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接DP,若点P,Q,D恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.19.(5分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数136101521a…正方形数1491625b49…五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.20.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?21.(10分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.22.(10分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).23.(12分)计算:2﹣1+|﹣|++2cos30°24.(14分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式的解集.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】解:0.5纳米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故选D.点睛:在负指数科学计数法中,其中,n等于第一个非0数字前所有0的个数(包括下数点前面的0).2、C【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.3、A【解析】
根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.【详解】∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数==1.故选:A.【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.4、A【解析】
根据二次函数图象所在的象限大致画出图形,由此即可得出结论.【详解】∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限.故选A.【点睛】本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.5、B【解析】
根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B选项:原式=,故B是无理数;C选项:原式==6,故C不是无理数;D选项:原式==12,故D不是无理数故选B.【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.6、D【解析】
直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.7、C【解析】试题分析:本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB==;故选C.考点:1.勾股定理;2.展开图折叠成几何体.8、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.9、B【解析】
解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于点E,∴,解得CE=cm,CD=3cm.故选B.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.10、D【解析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D正确.考点:三角形三边关系;分情况讨论的数学思想二、填空题(共7小题,每小题3分,满分21分)11、48【解析】
(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为故可列出方程求解.【详解】(1)∵∠ABC=150°,∴斜面BC的坡角为30°,∴h==4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为依题意得解得n=8故为八边形.【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.12、4【解析】
连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.【详解】解:连接OP、OB,∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,又∵点P是半圆弧AC的中点,OA=OC,∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,∴两部分面积之差的绝对值是点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.13、【解析】
根据圆周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【详解】由图可得,∠BAC=∠BDC,∵⊙O在边长为1的网格格点上,∴BE=3,DB=4,则tan∠BDC==∴tan∠BAC=故答案为【点睛】本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.14、(16,)(8068,)【解析】
利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)个三角形的直角顶点的坐标是(4,);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(16,),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(8068,).故答案为:(16,);(8068,)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.15、3.86×108【解析】根据科学记数法的表示(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数)形式可得:3.86亿=386000000=3.86×108.故答案是:3.86×108.16、【解析】
根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.17、1【解析】
根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.【详解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案为:1.三、解答题(共7小题,满分69分)18、(1)详见解析;(1)①详见解析;②BP=AB.【解析】
(1)根据要求画出图形即可;(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图1:(1)①证明:连接BD,如图1,∵线段AP绕点A顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:结论:BP=AB.理由:如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴19、123n2n2+x-n【解析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,
∴第n个“三角形数”是,∴a=7×82=17×82=1.
∵前5个“正方形数”分别是:1=12,4=22,9=32,16=42,25=52,
∴第n个“正方形数”是n2,∴b=62=2.
∵前4个“正方形数”分别是:1=,5=,12=,22=,
∴第n个“五边形数”是n(3n−1)2n(3n−1)2,∴c==3.
(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,
∴第n个“五边形数”是n2+x-n.点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.20、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】
(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.21、,当x=1时,原式=﹣1.【解析】
先化简分式,然后将x的值代入计算即可.【详解】解:原式==.且,∴x的整数有,∴取,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.22、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM(ASA),得AM=FM,设AM=x,则AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经理个人述职报告15篇
- 2025年度高品质钢筋产品进出口贸易合同范本2篇
- 带蒙文劳动合同书
- 北京体育职业学院《信息检索竞赛》2023-2024学年第一学期期末试卷
- 北京体育大学《制药工艺学》2023-2024学年第一学期期末试卷
- 北京石油化工学院《古典舞基训(4)》2023-2024学年第一学期期末试卷
- 北京师范大学-香港浸会大学联合国际学院《重金属污染防治理论与技术》2023-2024学年第一学期期末试卷
- 绿化合同书范本
- 2025版电机研发与高端智能制造技术引进合同3篇
- 2025年度新能源汽车充电桩建设合同补充协议
- 2025年上半年河南省西峡县部分事业单位招考易考易错模拟试题(共500题)试卷后附参考答案-1
- 深交所创业板注册制发行上市审核动态(2020-2022)
- 手术室护理组长竞聘
- 电力系统继电保护试题以及答案(二)
- 小学生防打架斗殴安全教育
- 网络运营代销合同范例
- 2024年新人教版七年级上册历史 第14课 丝绸之路的开通与经营西域
- 植保无人机安全飞行
- 医疗纠纷事件汇报
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 管廊维护与运营绩效考核评分表
评论
0/150
提交评论