



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A. B. C. D.2.命题“”的否定是()A. B.C. D.3.已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为()A.2020 B.20l9 C.2018 D.20174.函数图象的大致形状是()A. B.C. D.5.设复数满足,则()A. B. C. D.6.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.7.的展开式中的系数为()A. B. C. D.8.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.9.若的展开式中的系数为150,则()A.20 B.15 C.10 D.2510.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种 B.44种 C.48种 D.54种11.已知,,分别为内角,,的对边,,,的面积为,则()A. B.4 C.5 D.12.命题“”的否定为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),则△PMF周长的最小值是_____.14.某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为___________.15.如图所示,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则____.16.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.18.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.19.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,,求的值.20.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.(ⅰ)求面积最大值;(ⅱ)证明:直线与斜率之积为定值.21.(12分)已知函数.(1)若函数在上单调递增,求实数的值;(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线.22.(10分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,,,且满足.(1)求;(2)若,,求的最大值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】
首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【题目详解】的最小正周期为,那么(∈),于是,于是当时,最小值为,故选B.【答案点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.2.D【答案解析】
根据全称命题的否定是特称命题,对命题进行改写即可.【题目详解】全称命题的否定是特称命题,所以命题“,”的否定是:,.故选D.【答案点睛】本题考查全称命题的否定,难度容易.3.B【答案解析】
根据题意计算,,,计算,,,得到答案.【题目详解】是等差数列的前项和,若,故,,,,故,当时,,,,,当时,,故前项和最大.故选:.【答案点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.4.B【答案解析】
判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【题目详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,,可排除D;故选:B.【答案点睛】本题考查函数表达式判断函数图像,属于中档题.5.D【答案解析】
根据复数运算,即可容易求得结果.【题目详解】.故选:D.【答案点睛】本题考查复数的四则运算,属基础题.6.B【答案解析】
选B.考点:圆心坐标7.C【答案解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.8.B【答案解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:
直三棱柱的体积为,消去的三棱锥的体积为,
∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.9.C【答案解析】
通过二项式展开式的通项分析得到,即得解.【题目详解】由已知得,故当时,,于是有,则.故选:C【答案点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.10.B【答案解析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【题目详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.【答案点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.11.D【答案解析】
由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出的值.【题目详解】解:,即,即.,则.,解得.,故选:D.【答案点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角的正弦值余弦值.12.C【答案解析】
套用命题的否定形式即可.【题目详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【答案点睛】本题考查全称命题的否定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.5【答案解析】
△PMF的周长最小,即求最小,过做抛物线准线的垂线,垂足为,转化为求最小,数形结合即可求解.【题目详解】如图,F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),抛物线C:x2=8y的焦点为F(0,2),准线方程为y=﹣2.过作准线的垂线,垂足为,则有,当且仅当三点共线时,等号成立,所以△PMF的周长最小值为55.故答案为:5.【答案点睛】本题考查抛物线定义的应用,考查数形结合与数学转化思想方法,属于中档题.14.【答案解析】
从7人中选出2人则总数有,符合条件数有,后者除以前者即得结果【题目详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,∴故答案为:【答案点睛】组合数与概率的基本运用,熟悉组合数公式15.【答案解析】
过点做,可得,,由可得,可得,代入可得答案.【题目详解】解:如图,过点做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案为:.【答案点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.16.1元【答案解析】设分别生产甲乙两种产品为桶,桶,利润为元
则根据题意可得目标函数,作出可行域,如图所示作直线然后把直线向可行域平移,
由图象知当直线经过时,目标函数的截距最大,此时最大,
由可得,即此时最大,
即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1.【答案点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(为参数),;(2)【答案解析】分析:(1)直线的参数方程为(为参数),其中表示之间的距离,而极坐标方程可化为,从而的直角方程为.(2)设,则,利用在圆上得到满足的方程,最后利用韦达定理就可求出两条线段的和.详解:(1)直线的参数方程为(为参数).曲线的极坐标方程可化为.把,代入曲线的极坐标方程可得,即.(2)把直线的参数方程为(为参数)代入圆的方程可得:.∵曲线与直线相交于不同的两点,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范围是.点睛:(1)直线的参数方程有多种形式,其中一种为(为直线的倾斜角,是参数),这样的参数方程中的参数有明确的几何意义,它表示之间的距离.(2)直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.18.(1)答案不唯一,具体见解析(2)【答案解析】
(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【题目详解】解:(1)因为,所以,①当时,,在上单调递减.②当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,,令,得.设,则.当时,,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,,符合题意.当时,,所以有唯一实根,当时,,在上单调递增,,不符合题意.综上,,即的取值范围为.【答案点睛】本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分类讨论思想和计算能力,属于难题.19.(1),;(2)2.【答案解析】
(1)由得,求出曲线的直角坐标方程.由直线的参数方程消去参数,即求直线的普通方程;(2)将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,韦达定理得,点在直线上,则,即可求出的值.【题目详解】(1)由可得,即,即,曲线的直角坐标方程为,由直线的参数方程(t为参数),消去得,即直线的普通方程为.(Ⅱ)点的直角坐标为,则点在直线上.将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,整理得,直线与曲线交于两点,,即.设点所对应的参数分别为,由韦达定理可得,.点在直线上,,.【答案点睛】本题考查参数方程、极坐标方程和普通方程的互化及应用,属于中档题.20.(1);(2)(ⅰ);(ⅱ)证明见解析.【答案解析】
(1)由,解方程组即可得到答案;(2)(ⅰ)设,,则,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.【题目详解】(1)设,由,得.将代入,得,即,由,解得,所以椭圆的标准方程为.(2)设,,则,(ⅰ)易知为的中位线,所以,所以,又满足,所以,得,故,当且仅当,即,时取等号,所以面积最大值为.(ⅱ)记直线斜率为,则直线斜率为,所以直线方程为.由,得,由韦达定理得,所以,代入直线方程,得,于是,直线斜率,所以直线与斜率之积为定值.【答案点睛】本题考查直线与椭圆的位置关系,涉及到椭圆中的最值及定值问题,在解椭圆与直线的位置关系的答题时,一般会用到根与系数的关系,考查学生的数学运算求解能力,是一道有一定难度的题.21.(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育赛事风险评估与管理计划
- 2021-2026年中国机床附件行业发展监测及投资战略规划研究报告
- 中国竹鼠养殖市场竞争格局及投资战略规划报告
- 2025-2030中国桥梁健康监测系统行业市场深度调研及发展趋势与投资前景研究报告
- 2024年全球及中国抵押贷款流程外包服务行业头部企业市场占有率及排名调研报告
- 2025-2030中国智能停车咪表行业市场深度调研及市场供需与投资价值研究报告
- 2025-2030中国有机高分子材料行业市场深度分析及发展趋势与投资研究报告
- 2025-2030中国有机小麦行业发展分析及投资前景预测研究报告
- 2025-2030中国智能卡市场调研及发展策略研究报告
- 2025-2030中国普通肿瘤无菌注射行业市场发展趋势与前景展望战略分析研究报告
- 2025-2030垃圾发电产业市场深度分析及前景趋势与投资研究报告
- 物理-安徽省安庆市2024-2025学年高三下学期第二次模拟考试试卷(安庆二模)试题和答案
- 律师尽职调查工作方案
- 开关柜防凝露施工方案
- 2024年杭州市粮食收储有限公司招聘考试真题
- 新质生产力:学术研究与前沿探索
- 血液净化中心的感染预防与控制
- 5.1 人民代表大会:我国的国家权力机关 课件高中政治统编版必修三政治与法治
- 邢台2025年河北邢台市高层次人才引进1025人笔试历年参考题库附带答案详解
- 2025年统计学 1试题及答案
- 2025年起重工(技师)职业技能鉴定理论考试题库(含答案)
评论
0/150
提交评论