版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调递增区间是()A. B. C. D.2.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)3.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2 B.3 C.4 D.4.执行如图所示的程序框图,若输入,,则输出的值为()A.0 B.1 C. D.5.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为()A. B. C. D.6.设集合,,若,则()A. B. C. D.7.设、,数列满足,,,则()A.对于任意,都存在实数,使得恒成立B.对于任意,都存在实数,使得恒成立C.对于任意,都存在实数,使得恒成立D.对于任意,都存在实数,使得恒成立8.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.29.设,其中a,b是实数,则()A.1 B.2 C. D.10.如图,四边形为正方形,延长至,使得,点在线段上运动.设,则的取值范围是()A. B. C. D.11.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是()A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列12.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.14.已知点P是直线y=x+1上的动点,点Q是抛物线y=x2上的动点.设点M为线段PQ的中点,O为原点,则15.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.16.的展开式中的常数项为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.18.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)已知函数.(1)求的单调区间;(2)讨论零点的个数.20.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.21.(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求与的回归直线方程;②叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,22.(10分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【题目详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.【答案点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.2.D【答案解析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【题目详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【答案点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.3.B【答案解析】
因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【题目详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,,即,又,.故选:B.【答案点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.4.A【答案解析】
根据输入的值大小关系,代入程序框图即可求解.【题目详解】输入,,因为,所以由程序框图知,输出的值为.故选:A【答案点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.5.B【答案解析】
根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【题目详解】.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【答案点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.6.A【答案解析】
根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【题目详解】依题意可知是集合的元素,即,解得,由,解得.【答案点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.7.D【答案解析】
取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【题目详解】取,,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D.【答案点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.8.C【答案解析】
由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【题目详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【答案点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.9.D【答案解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【题目详解】由题可知:,即,所以则故选:D【答案点睛】本题考查复数模的计算,考验计算,属基础题.10.C【答案解析】
以为坐标原点,以分别为x轴,y轴建立直角坐标系,利用向量的坐标运算计算即可解决.【题目详解】以为坐标原点建立如图所示的直角坐标系,不妨设正方形的边长为1,则,,设,则,所以,且,故.故选:C.【答案点睛】本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.11.D【答案解析】
由折线图逐项分析即可求解【题目详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【答案点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题12.B【答案解析】
,选B.二、填空题:本题共4小题,每小题5分,共20分。13.9【答案解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【题目详解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案为:.【答案点睛】本题考查正余弦定理在解三角形中的应用,难度一般.14.3【答案解析】
过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,当直线相切时距离最小,计算得到答案.【题目详解】如图所示:过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,y=x2,则y'=2x=1,x=1点M为线段PQ的中点,故M在直线y=x+38时距离最小,故故答案为:32【答案点睛】本题考查了抛物线中距离的最值问题,转化为切线问题是解题的关键.15.【答案解析】
求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【题目详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为,,,的渐近线方程为:,即.故答案为:【答案点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.16.【答案解析】
写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.【题目详解】的展开式通项公式为:,令,所以,所以常数项为.
故答案为:.【答案点睛】本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)见解析【答案解析】
(1)消去t,得直线的普通方程,利用极坐标与普通方程互化公式得曲线的直角坐标方程;(2)判断与圆相离,连接,在中,,即可求解【题目详解】(1)将的参数方程(为参数)消去参数,得.因为,,所以曲线的直角坐标方程为.(2)由(1)知曲线是以为圆心,3为半径的圆,设圆心为,则圆心到直线的距离,所以与圆相离,且.连接,在中,,所以,,即的最小值为.【答案点睛】本题考查参数方程化普通方程,极坐标与普通方程互化,直线与圆的位置关系,是中档题18.(Ⅰ)证明见解析;(Ⅱ)【答案解析】
(Ⅰ)证明,根据得到,得到证明.(Ⅱ)如图所示,分别以为轴建立空间直角坐标系,平面的法向量,,计算向量夹角得到答案.【题目详解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如图所示:分别以为轴建立空间直角坐标系,则,,,,.设平面的法向量,则,即,取得到,,设直线与平面所成角为故.【答案点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.19.(1)见解析(2)见解析【答案解析】
(1)求导后分析导函数的正负再判断单调性即可.(2),有零点等价于方程实数根,再换元将原方程转化为,再求导分析的图像数形结合求解即可.【题目详解】(1)的定义域为,,当时,,所以在单调递减;当时,,所以在单调递增,所以的减区间为,增区间为.(2),有零点等价于方程实数根,令则原方程转化为,令,.令,,∴,,,,,当时,,当时,.如图可知①当时,有唯一零点,即有唯一零点;②当时,有两个零点,即有两个零点;③当时,有唯一零点,即有唯一零点;④时,此时无零点,即此时无零点.【答案点睛】本题主要考查了利用导数分析函数的单调性的方法,同时也考查了利用导数分析函数零点的问题,属于中档题.20.另一个特征值为,对应的一个特征向量【答案解析】
根据特征多项式的一个零点为3,可得,再回代到方程即可解出另一个特征值为,最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.【题目详解】矩阵的特征多项式为:,是方程的一个根,,解得,即方程即,,可得另一个特征值为:,设对应的一个特征向量为:则由,得得,令,则,所以矩阵另一个特征值为,对应的一个特征向量【答案点睛】本题考查了矩阵的特征值以及特征向量,需掌握特征多项式的计算形式,属于基础题.21.(1)见解析,12.5(2)①②20【答案解析】
(1)运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;(2)①由公式可计算的值,进而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《制造业企业技术专长型高管对企业研发创新的影响研究》
- 《企业法人分支机构法律地位及责任承担问题研究》
- 《保心降压康对高血压大鼠血浆AngⅡ及ALD水平影响的实验研究》
- 《基于流量和压力数据分析的城市供水管网漏损定位研究》
- 《BiOCl-硅藻土复合材料的制备及其对水中环丙沙星光催化降解研究》
- 《孕期双酚A暴露对子代雄性大鼠肝脏脂质代谢的影响及SREBP-1的调控作用研究》
- 《复合残采区遗留群柱失稳致灾机理与防控研究》
- 2024年氟塑料放料阀项目可行性研究报告
- 小学德育工作计划
- 体育赛事无烟观赛方案
- 2024-2029年中国计量行业市场发展现状及发展趋势与投资战略研究报告
- 机器学习课件周志华Chap08集成学习
- 第19课资本主义国家的新变化【中职专用】《世界历史》(高教版2023基础模块)
- 个人建筑工程技术职业生涯发展规划报告
- 浣溪沙细雨斜风作晓寒
- 幼儿园小班绘本活动《我的门》课件
- 宣传视频拍摄服务 投标方案(技术方案)
- (2024年)全新公司法律讲座课件
- python程序设计 课件全套 董付国 第1-12章 初识python-程序设计案例分析
- 餐厅装修施工方案
- 中印战争完整版本
评论
0/150
提交评论