版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。1.2空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).在已知图形中取相互垂直的轴和轴,两轴相交于。画直观图时,把它们画成对应的轴与轴,两轴交于点,且使,它们确定的平面表示水平面。(2).已知图形中平行于轴或轴的线段,在直观图中分别画成平行于轴或轴的线段;(3).已知图形中平行于轴的线段,在直观图中保持原长度不变,平行于轴的线段,长度为原来的一半。5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积3圆锥的表面积4圆台的表面积5球的表面积(二)空间几何体的体积1柱体的体积2锥体的体积3台体的体积4球体的体积基础练习1选择题1.如图的组合体的结构特征是()A.一个棱柱中截去一个棱柱 B.一个棱柱中截去一个圆柱C.一个棱柱中截去一个棱锥 D.一个棱柱中截去一个棱台[答案]C2.有下列命题:①圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;②在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;③圆柱的任意两条母线所在的直线是平行的.其中正确的有()A.0个 B.1个C.2个 D.3个[答案]B3.(2023~2023·南京模拟)经过旋转可以得到图1中几何体的是图2中的()[答案]A4.图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是()A.(1)(2) B.(1)(3)C.(1)(4) D.(1)(5)[答案]D5.若一个圆锥的轴截面是等边三角形,其面积为eq\r(3),则这个圆锥的全面积是()A.3πB.3eq\r(3)πC.6πD.9π解析:设圆锥底面半径为R,∴eq\f(1,2)·2R·eq\r(3)R=eq\r(3),∴R=1,母线l长为2,∴S全=πR2+πRl=π+2π=3π.答案:A6.长方体三个面的面积分别为2,6和9,则长方体的体积是()A.6eq\r(3)B.3eq\r(6)C.11D.12解析:设长方体长、宽、高分别为a,b,c,不妨设ab=2,ac=6,bc=9,相乘得(abc)2=108,∴V=abc=6eq\r(3).答案:A7.(2023·湖北卷)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4答案:C8.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这截面把圆锥母线分成的两段的比是()A.1∶3B.1∶(eq\r(3)-1)C.1∶9D.eq\r(3)∶2解析:由题意可知,截面面积与底面面积之比为1∶3,∴截面半径与底面半径之比为1∶eq\r(3),∴这两段母线长之比为1∶eq\r(3)-1.答案:B二、填空题1.如图是一个几何体的表面展成的平面图形,则这个几何体是________.[答案]圆柱2.已知一个正方体内接于一个球,过球心作一截面,则下图中,截面不可能是________(填序号).[答案]④3.如图,已知长方体ABCDA1B1C1D1,过BC和AD分别作一个平面交底面A1B1C1D1于EF、PQ,则长方体被分成的三个几何体中,棱柱的个数是________.解析:三个几何体都是棱柱.答案:34.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解析:通过三视图还原三棱柱直观图如图所示,通过正视图可以得出该三棱柱底面边长为2,侧棱长为1,三个侧面为矩形,上下底面为正三角形,∴S表=3×(2×1)+2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),4)×22))=6+2eq\r(3).答案:6+2eq\r(3)5.如图,已知圆柱体底面圆的半径为eq\f(2,π)cm,高为2cm,AB、CD分别是两底面的直径,AD、BC是母线,若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短路线的长度是________cm(结果保留根式).答案:2eq\r(2)6.圆台的上、下底面半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是180°,圆台的表面积是()分析:由题目可获取以下主要信息:①求圆台的表面积应考虑上、下底面及侧面积;②上、下底面面积易得,主要求侧面积.解答本题可先把空间问题转化为平面问题,即在展开图内求母线的长,再进一步代入侧面积公式求出侧面积,进而求出表面积.解析:如图所示,设圆台的上底面周长为C,因为扇环的圆心角是180°,故C=π·SA=2π×10,∴SA=20,同理可得SB=40,∴AB=SB-SA=20,∴S表面积=S侧+S上+S下=π(r1+r2)·AB+πreq\o\al(2,1)+πreq\o\al(2,2)=π(10+20)×20+π×102+π×202=1100π(cm2).故圆台的表面积为1100πcm2.7.如右图所示,在底半径为2,母线长为4的圆锥中内接一个高为eq\r(3)的圆柱,圆柱的表面积为()解析:圆锥高h=eq\r(42-22)=2eq\r(3),画轴截面积图(如右图),则eq\f(\r(3),2\r(3))=eq\f(2-x,2).故圆锥内接圆柱的底半径x=1.则圆柱的表面积S=2π×12+2π×1×eq\r(3)=(2+2eq\r(3))π.答案:(2+2eq\r(3))π强化提升一选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行[答案]D2.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形[答案]D3.(2023-2023·嘉兴高一检测)如下图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案]B[解析]在图(2)、(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)、(3)完全一样,而(1)、(4)则不同[解题提示]让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.4.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面[答案]C5.如右图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体[答案]B[解析]圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.6.已知某空间几何体的三视图如图所示,则此几何体为()A.圆台 B.四棱锥C.四棱柱 D.四棱台[答案]D7.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案]D8.(2023-2023·安徽淮南高三模拟)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④[答案]D[解析]①正方体,三视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三视图各不相同;④圆台,正视图和侧视图相同.[点评]熟悉常见几何体的三视图特征,对于画几何体的直观图是基本的要求.下图是最基本的常见几何体的三视图.几何体直观图形正视图侧视图俯视图正方体长方体圆柱圆锥圆台球9.给出以下关于斜二测直观图的结论,其中正确的个数是()①角的水平放置的直观图一定是角.②相等的角在直观图中仍相等.③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行.A.0 B.1C.2 D.3[答案]C[解析]由斜二测画法规则可知,直观图保持线段的平行性,∴④对,①对;而线段的长度,角的大小在直观图中都会发生改变,∴②③错.10.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上说法正确的是()A.① B.①②C.③④ D.①②③④[答案]B[解析]根据画法规则,平行性保持不变,与y轴平行的线段长度减半.二填空题1.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③水面EFGH始终为矩形.其中正确的命题序号是________.[答案]①③2.下列图形:①三角形;②直线;③平行四边形;④四面体;⑤球.其中投影不可能是线段的是________.[答案]②④⑤[解析]三角形的投影是线段成三角形;直线的投影是点或直线;平行四边形的投影是线段或平行四边形;四面体的投影是三角形或四边形;球的投影是圆.3.由若干个小正方体组成的几何体的三视图如下图,则组成这个组合体的小正方体的个数是________.[答案]5[解析]由三视图可作出直观图,由直观图易知共有5个小正方体.4.(2023~2023·烟台高一检测)已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有________.[答案]①②③④5.(2023-2023·湖南高三“十二校联考”)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.[答案]3[解析]该几何体是四棱锥,其底面是边长为4的正方形,高等于4,如图(1)所示的四棱锥A-A1B1C1D1,如图(2)所示,三个相同的四棱锥A-A1B1C1D1,A-BB1C1C,A-DD1C1C可以拼成一个棱长为4的正方体.6.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________,点M′的找法是________.[答案]M′(4,2)在坐标系x′O′y′中,过点(4,0)和y′轴平行的直线与过点(0,2)和x′轴平行的直线的交点即是点M′.[解析]在x′轴的正方向上取点M1,使O1M1=4,在y′轴上取点M2,使O′M2=2,过M1和M2分别作平行于y′轴和x′轴的直线,则交点就是M′.7.如右图,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是________.[答案]10[解析]由斜二测画法,可知△ABC是直角三角形,且∠BCA=90°,AC=6,BC=4×2=8,则AB=eq\r(AC2+BC2)=10.8.如图,是△AOB用斜二测画法画出的直观图,则△AOB的面积是________.[答案]16[解析]由图易知△AOB中,底边OB=4,又∵底边OB的高为8,∴面积S=eq\f(1,2)×4×8=16.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是________[答案]8[解析]原图形为OABC为平行四边形,OA=1,AB=eq\r(OA2+OB2)=3,∴四边形OABC周长为8.章节练习一、选择题正视图俯视图侧视图1.右面的三视图所示的几何体是正视图俯视图侧视图A.六棱台 B.六棱锥C.六棱柱 D.六边形(第1题)2.已知两个球的表面积之比为1∶9,则这两个球的半径之比为().A.1∶3 B.1∶SKIPIF1<0 C.1∶9 D.1∶81(第3题)正(主)视图侧(左)视图3(第3题)正(主)视图侧(左)视图4.A,B为球面上相异两点,则通过A,B两点可作球的大圆(圆心与球心重合的截面圆)有().A.一个 B.无穷多个正视图侧视图俯视图(第正视图侧视图俯视图(第5题)5.右图是一个几何体的三视图,则此几何体的直观图是().).ABCD6.下图为长方体木块堆成的几何体的三视图,堆成这个几何体的木块共有().(第6题)(第6题)B.2块C.3块D.4块7.关于斜二测画法画直观图说法不正确的是().A.在实物图中取坐标系不同,所得的直观图有可能不同B.平行于坐标轴的线段在直观图中仍然平行于坐标轴C.平行于坐标轴的线段长度在直观图中仍然保持不变D.斜二测坐标系取的角可能是135°8.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是().A.①② B.①③ C.①④ D.②④9.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能是().ABCD10.如果一个三角形的平行投影仍然是一个三角形,则下列结论正确的是().A.原三角形的内心的平行投影还是投影三角形的内心B.原三角形的重心的平行投影还是投影三角形的重心C.原三角形的垂心的平行投影还是投影三角形的垂心D.原三角形的外心的平行投影还是投影三角形的外心二、填空题11.一圆球形气球,体积是8cm3,再打入一些空气后,气球仍然保持为球形,体积是27cm3.则气球半径增加的百分率为.12.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是.(第13(第13题)①如果A是多面体的下底面,那么上面的面是;②如果面F在前面,从左边看是面B,那么上面的面是.14.一个几何体的三视图如下图所示,则此几何体的体积是.三、解答题15.圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为6p,且底面圆直径与母线长相等,求四棱柱的体积.16.下图是一个几何体的三视图(单位:cm)(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.俯视图俯视图ABCB'A'C'11正视图B'BA'A3侧视图ABC1(第16题)17.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2SKIPIF1<0,AD=2,求四边形ABCD绕直线AD旋转一周所成几何体的表面积及体积.((第17题)18.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,试比较它们的体积V正方体,V球,V圆柱的大小.(第19题)19.如图,一个圆锥形容器的高为a,内装有一定量的水.如果将容器倒置,这时水所形成的圆锥的高恰为SKIPIF1<0,求原来水面的高度.(第19题)(第20题)20.如图,四棱柱的底面是菱形,各侧面都是长方形.两个对角面也是长方形,面积分别为Q1(第20题)参考答案一、选择题1.B解析:由正视图和侧视图可知几何体为锥体,由俯视图可知几何体为六棱锥.2.A解析:由设两个球的半径分别为r,R,则4pr2∶4πR2=1∶9.∴r2∶R2=1∶9,即r∶R=1∶3.3.C解析:在根据得到三视图的投影关系,∵正视图中小长方形位于左侧,∴小长方形也位于俯视图的左侧;∵小长方形位于侧视图的右侧,∴小长方形一定位于俯视图的下侧,∴图C正确.4.D解析:A,B不在同一直径的两端点时,过A,B两点的大圆只有一个;A,B在同一直径的端点时大圆有无数个.5.D解析:由几何体的正视图和侧视图可知,几何体上部分为圆锥体,由三个视图可知几何体下部分为圆柱体,∴几何体是由圆锥和圆柱组成的组合体.(第6题(第6题)解析:由三视图可知几何体为右图所示,显然组成几何体的长方体木块有4块.7.C解析:由平行于x轴和z轴的线段长度在直观图中仍然保持不变,平行于y轴的线段长度在直观图中是原来的一半,∴C不对.8.D解析:①的三个视图均相同;②的正视图和侧视图相同;③的三个视图均不相同;④的正视图和侧视图相同.∴有且仅有两个视图相同的是②④.9.A解析:B是经过正方体对角面的截面;C是经过球心且平行于正方体侧面的截面;D是经过一对平行的侧面的中心,但不是对角面的截面.10.B解析:在平行投影中线段中点在投影后仍为中点,故选B.二、填空题11.50%.解析:设最初球的半径为r,则8=SKIPIF1<0pr3;打入空气后的半径为R,则27=SKIPIF1<0pR3.∴R3∶r3=27∶8.∴R∶r=3∶2.∴气球半径增加的百分率为50%.12.160.解析:依条件得菱形底面对角线的长分别是SKIPIF1<0=SKIPIF1<0和SKIPIF1<0=SKIPIF1<0.∴菱形的边长为SKIPIF1<0=8.∴棱柱的侧面积是5×4×8=160.13.F,C.解析:将多面体看成长方体,A,F为相对侧面.如果A是多面体的下底面,那么上面的面是F;如果面F在前面,从左边看是面B,则右面看必是D,于是根据展开图,上面的面应该是C.14.80.解析:由三视图可知,几何体是由棱长为4的正方体和底面边长为4,高为3的四棱锥组成,因此它的体积是V=43+SKIPIF1<0×42×3=64+16=80.三、解答题15.参考答案:设圆柱底面圆半径为r,则母线长为2r.∵圆柱表面积为6p,∴6p=2pr2+4pr2.∴r=1.∵四棱柱的底面是圆柱底面的内接正方形,∴正方形边长为SKIPIF1<0.∴四棱柱的体积V=(SKIPIF1<0)2×2=2×2=4.16.(1)略.(2)解:这个几何体是三棱柱.由于底面△ABC的BC边上的高为1,BC=2,∴AB=SKIPIF1<0.故所求全面积S=2S△ABC+SBB′C′C+2SABB′A′=8+6SKIPIF1<0(cm2).几何体的体积V=S△ABC·BB′=SKIPIF1<0×2×1×3=3(cm3).17.解:S表面=S下底面+S台侧面+S锥侧面=p×52+p×(2+5)×5+p×2×2SKIPIF1<0=(60+4SKIPIF1<0)p.V=V台-V锥=SKIPIF1<0p(SKIPIF1<0+r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课件插连接教学课件
- 水果趣味课件教学课件
- 2024年培训学校安全培训与发展协议
- 2024年广告投放合同标的与服务内容的详细规定
- 2024年度软件开发与维护担保合同
- 2024互联网公司与网络安全公司之间的安全服务合同
- 2024年员工福利方案设计与实施合同
- 2024营销推广服务合同范本
- 2024厂房租赁协议私人厂房出租合同
- 2024年度大数据分析平台建设与技术支持合同
- 【语文】宁波市小学四年级上册期中试卷
- 《埃隆·马斯克传》导读
- 环保设施安全风险评估报告
- MOOC创新创业与管理基础(东南大学)
- 【基于活动理论的信息技术课程教学研究8300字(论文)】
- 年产15万吨PET的生产工艺设计-毕业论文
- 车间生产计划完成情况统计表
- 品管圈(QCC)降低ICU护士床头交接班缺陷率课件
- 《左道:中国宗教文化中的神与魔》读书笔记模板
- 施工现场临时用电安全技术规范
- 同仁堂药品目录
评论
0/150
提交评论