弹性力学课件32_第1页
弹性力学课件32_第2页
弹性力学课件32_第3页
弹性力学课件32_第4页
弹性力学课件32_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.9SOLUTIONOFPLANEPROBLEMINTERMSOFDISPLACEMENTForthesolutionofanelasticityproblem,wecanproceedinthreedifferentways:1.Takethedisplacementcomponentsasthebasicunknownfunctions,formulateasystemofdifferentialequations

andboundaryconditions

containingthedisplacementcomponentsonly,solvefortheseunknownfunctionsandtherebyfindthestraincomponentsbythegeometricalequationsandthenthestresscomponentsbythephysicalequations.

2.Takethestresscomponentsasthebasicunknownfunctions,formulateasystemofdifferentialequationsandboundaryconditionscontainingthestresscomponentsonly,solvefortheseunknownfunctionsandtherebyfindthestraincomponentsbythephysicalequationsandthenthedisplacementcomponentsbythegeometricequation.3.Takesomeofthedisplacementcomponentsandalsosomeofthestresscomponentsasthebasicunknownfunctions,formulateasystemofdifferentialequationsandboundaryconditionscontainingthestresscomponentsonly,solvefortheseunknownfunctionsandtherebyfindtheotherunknownfunctions.Nowweproceedtoformulatethedifferentialequationsandboundaryconditionsforsolutionofaplaneproblemintermsofdisplacements.Thegeometricequations:

1.Thedifferentialequations

Thephysicalequations(planestressproblem)SubstitutionofgeometricEotheseequationsNow,usingtheserelationsinequilibriumequationsThedifferentialequationsforthesolutionoftheproblemintermsofdisplacements.

2.Boundaryconditions

lx+mxy=Xmy+lxy=YStressboundaryconditionsofaplaneproblemWeobtainthestressboundaryconditionsoftheproblemintermsofdisplacements:Tosumup,Thedisplacecomponentsu(x,y),v(x,y)inaplanestressproblemmustsatisfythroughoutthebodyconsideredandalsosatisfyonthesurfaceofthebody.Foraplanestrainproblem,itisnecessaryinaboveequations.2.10SOLUTIONOFPLANEPROBLEMINTERMSOFSTRESSESThetwodifferentialequationsofequilibriumcontainthestresscomponentsonlyandmaybeusedfortheirsolution.Thethirddifferentialequationcanbeobtainedfromthegeometricalandphysicalequationsbyeliminatingthedisplacementcomponentstherein.ThegeometricalequationsofaplaneproblemareAddingthesecondderivativeofxwithrespecttoyandthesecondderivativeofywithrespecttox,wegetThecompatibilityequationforstrainThecompatibilityequationforstrainmustbesatisfiedbythestraincomponentsx,yandxytoensuretheexistenceofsingle-valuedcontinuousfunctionsuandvconnectedwiththestraincomponentsbythegeometricalequations.若所选选的x、y和xy不满足足这个个方程程,那那么,,由几几何方方程中中的任任意两两个所所求出出的位位移分分量,,将不不满足足第三三个方方程例如选x=0,y=0,xy=cxy

不满足相容方程由此应应变求求位移移第三个个方程程不能能满足足,所所求u,v不存在在Byusingphysicalequations,thecompatibilityequationcanbetransformedintoarelationbetweenthestresscomponents.Substitutionofthephysicalequationsinto

Foraplanestressproblem

Totransformthisequationintoadifferentformmoresuitableforuse,weeliminatetheterminvolvingxybyusingthedifferentialequationsofequilibrium.Differentiatingthefirstequationwithrespecttoxandthesecondwithrespecttoy,addingthemupandnotingthatxy=yx,wegetSubstitutingthisintothecompatibilityequationandperformingsomesimplification,weobtainthecompatibilityequationintermsofstresses.Foraplanestrainproblem,anequationsimilartoaboveequationmaybeobtainedsimplybyTheresultisThus,1.Inthesolutionofaplaneproblemintermsofstresses,thestresscomponentsmustsatisfythedifferentialequationsofequilibriumandthecompatibilityequation.Besides,theymustsatisfythestressboundaryconditions.2.Sincethedisplacementboundaryconditionscanbeexpressedneitherintermsofstresscomponentsnorintermsoftheirderivativeswithrespecttothecoordinates,displacementboundaryproblemsandmixedboundaryproblemscannotbesolvedintermsofstresses.Inthesolutionofelasticityproblems,itisnecessarytodistinguishbetweensimplyconnectedbodiesandmultiplyconnectedones.Abodyissaidtobesimplyconnectedifanarbitraryclosedcurvelyinginthebodycanbeshrunktoapoint,bycontinuouscontraction,withoutpassingoutsideitsboundaries.Solidblocksandhollowspheresareexamplesofsimplyconnectedbodies.Otherwise,thebodywillbesaidtobemultiplyconnected.Ringsandhollowcylindersareexamplesofmultiplyconnectedones.Inthecaseofmultiplyconnectedbody,theremightbesomearbitraryfunctionsleadingtomulti-valueddisplacements,whichareimpossibleinacontinuousbody.Then,wehavetoconsidertheconditionofsingle-valueddisplacementstodeterminethestresses.Inplaneproblems,however,wemayalsobrieflydefineasimplyconnectedbodyasonewithonlyonecontinuousboundaryandamultiplyconnectedbodyasonewithtwoormoreboundaries.2.11CASEOFCONSTANTBODYFORCESInmanyengineeringproblems,thebodyforcesareconstant,I.e.,thecomponentsXandYdonotvarywithcoordinatesthroughoutthevolumeofthewholebody.(thegravityforces,theinertiaforces)Ontheconditionofconstantbodyforces,thecompatibilityequationswillreducetothehomogeneousdifferentialequationNow,thedifferentialequationsofequilibriumandthestressboundaryconditions,aswellasthecompatibilityequations,donotcontainanyelasticconstantandarethesameforbothkindsofplaneproblems.Hence,inastressboundaryproblemforasimplyconnectedbodywithacertainboundaryandsubjectedtocertainexternalforces,thestresscomponentsx,y,xywillbeindependentoftheelasticpropertiesofthebodyandhavethesamedistributioninbothplanestressconditionandplanestraincondition.Thisconclusionisveryhelpfulintheexperimentalanalysisofthestressesinastructureoritselements.(1)可将将某种材料料,某种状状态下所求求的应力分分量的结论论用于其他他材料或其其他状态((边界条件件,外荷载载相同)(2)Wemayuseamodelinplanestresscondition(athinslice)insteadofoneinplanestraincondition(alongcylindricalbody).(1)Wemayuseanymodelmaterialconvenientforstressmeasurementinsteadofthestructurematerialonwhichthemeasurementmightbeimpossible.(3)Beside,inthecaseofastressboundaryproblemforsimplyconnectedbodiessubjectedtoconstantbodyforces,astressanalysisfortheactionofthebodyforcesmaybeconvertedtotheanalysisfortheactionofsurfaceforces.Thestresscomponentsx,y,xyaredeterminedbythedifferentialequations(a)(b)andtheboundaryconditionsl(x)s+m(xy)s=Xm(y)s+l(xy)s=YNow,wesetx=’x-Xx,y=’y-Yy,xy=’xyandproceedtofindthedifferentialequationsandboundaryconditionswhichmustbesatisfiedby’x,’y,’xy.(c)Substitutetheminto(a),(b)and(c)andobtainl(’x)s+m(’xy)s=X+lXxm(’y)s+l(’xy)s=Y+mYyWeseethatthedifferentialequationsandboundaryconditionstobesatisfiedby’x,’y,’xymustbethesameasthoseinaproblemwithzerobodyforcesandwithsurfaceforcecomponentsXandYincreasedbylXxandmYy,respectively.Thisconclusionsuggestsaprocessforthesolutionofx,y,xy:NeglectthebodyforcesandapplyfictitioussurfaceforcecomponentsX”=lXxandY”=mYyinadditiontotheoriginalsurfaceforces;Solveforthestresscomponents,’x,’y,’xy,byappropriatemethods;Findx=’x-Xx,y=’y-Yy,xy=’xy2.12AIRY’’SSTRESSFUNCTION.INVERSEMETHODANDSEMI-INVERSEMETHODisnonhomogeneousand,therefore,itsgeneralsolutionmaybeexpressedasthesumofaparticularsolutionandthegeneralsolutionofthehomogeneoussystemWhenbodyforcesareconstant,theparticularsolutionmaybetakenasx=-Xx,y=-Yy,xy=0orx=0,y=0,xy=-Xy-Yxorx=-Xx-Yy,y=-Xx-Yy,xy=0Whichsatisfyequations(1)(2)Accordingtodifferentialcalculus,for(1),thereexistsacertainfunctionA(x,y)sothat:RewriteSimilarly,(2)ensurestheexistenceofanotherfunctionB(x,y)sothat:Sincexy=yx,wehaveWhichensurestheexistenceofstillanotherfunction(x,y)sothatWeobtainthegeneralsolutionofhomogeneousequations:Now,thesuperpositionofthegeneralsolutionwiththeparticularsolutionyieldsthefollowingcompletesolution:Thefunction(x,y)isknownasthestressfunctionforplaneproblems,ortheAiry’sstressfunction.Inorderforthestresscomponentstosatisfythecompatibilityequationaswell,thestressfunctionmustsatisfyacertainequation.or

2(Xx)=

2(Yy)=0intheconditionofconstantbodyforceorbesimplywrittenas:Whenbodyforcesarenotconsidered,thesolutionwillreducetoThus:inthesolutionofplaneproblemsintermsofstresses,whenthebodyforcesareconstant,itisonlytosolveforthestressfunctionfromthesingledifferentialequationandthenfindthestresscomponentsbyButthesestresscomponentsmustsatisfythestressboundarycondition.Inthecaseofmultiplyconnectedbodies,theconditionofsingle-valueddisplacementsmustbeinspectedinaddition.Tosolvethepartialdifferentialequationsofelasticitytogetherwiththegivenboundaryconditions,thedirectmethodofsolutionisusuallyimpossible.Wehavetousetheinversemethodorthesemi-inversemethod.Intheinversemethod,somefunctionssatisfyingthedifferentialequationsaretakenandexaminedtoseewhatboundaryconditionsthesefunctionswillsatisfyandtherebytoknowwhatproblemstheycansolve.InthecaseofsolutionbyAiry’sstressfunction,weselectsomefunctionsatisfyingthecompatibilityequation,findthestresscomponents,andthenfindthesurfaceforcecomponents.Inthisway,weidentifytheproblemwhichthestressfunctioncansolve.Inthesemi-inversemethod,weassumethesolutionforthestressesordisplacementsinagivenproblem,basedontheloadingconditionandboundaryconditionsoftheproblem,andthenproceedtoshowthatallthedifferentialequationsandboundaryconditionsaresatisfied.InthecaseofsolutionbyAiry’sstressfunction,wemakeassumptionsregardingthestresscomponents,findthecorrespondingstressfunctionandproceedtoshowthatthestresscomponentsderivedfromthisstressfunctioncansatisfyalltheboundaryconditions.Ifsomeoftheboundaryconditionsarenotsatisfied,thenwehavetomodifytheassumptionsmade.本章小结1、平面问题平面应力问题和平面应变问题2、平面问题题的基本未知知量:x、y、xy、x、y、xy、u、v3、平面问题题的基本方程程和边界条件件:平衡微分方程:几何方程:物理方程:平面应力问题:平面应变问题题边界界条条件件::位位移移边边界界条条件件和和应应力力边边界界条条件件lx+mxy=Xmy+lxy=Y应力边界条件4、、平平面面问问题题的的求求解解方方法法::按按位位移移求求解解;;按按应应力力求求解解按位位移移求求解解,,要要求求位位移移满满足足拉拉密密方方程程,,在在边边界

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论