八年级数学一次函数知识点总结_第1页
八年级数学一次函数知识点总结_第2页
八年级数学一次函数知识点总结_第3页
八年级数学一次函数知识点总结_第4页
八年级数学一次函数知识点总结_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5/5一次函数知识点总结一、函数1.变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。变量还分为自变量和因变量。2.常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。3.函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值.4.函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法.用数学式子表示函数的方法叫做表达式法(解析式法)。由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。5.求函数的自变量取值范围的方法.(1)要使函数的表达式有意义:eq\o\ac(○,1)整式(多项式和单项式)时为全体实数;eq\o\ac(○,2)分式时,让分母≠0;eq\o\ac(○,3)含二次根号时,让被开方数≠0。(2)对实际问题中的函数关系,要使实际问题有意义。注意可能含有隐含非负或大于0的条件。6.求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值.7.描点法画函数图象的一般步骤如下:Step1:列表(表中给出一些自变量的值和其对应的函数值);Step2:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);Step3:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).8.判断y是不是x的函数的题型eq\o\ac(○,1)给出解析式让你判断:可给x值来求y的值,若y的值唯一确定,则y是x的函数;否则不是。eq\o\ac(○,2)给出图像让你判断:过x轴做垂线,垂线与图像交点多余一个(≥2)时,y不是x的函数;否则y是x的函数。二、正比例函数1.正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。注意点eq\o\ac(○,1)自变量x的次数是一次幂,且只含有x的一次项;eq\o\ac(○,2)比例系数k≠0;eq\o\ac(○,3)不含有常数项,只有x一次幂的单项而已。2.正比例函数图像:一般地,正比例函数的y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限(正奇),从左向右上升,即随着x的增大y也增大。当k<0时,直线y=kx经过第二、四象限(负偶),从左向右下降,即随着x的增大y反而减小。k>0,撇一三象限k>0,撇一三象限从左到右上升Y随x的增大而增大XYXYK<0,捺二四象限从左到右下降Y随x的增大而减小画正比例函数的最简单方法:(1)先选取两点,通常选出(0,0)与点(1,k);(2)在坐标平面内描出点(0,0)与点(1,k);(3)过点(0,0)与点(1,k)做一条直线.这条直线就是正比例函数y=kx(k≠0)的图象。三、一次函数1.一次函数的定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注意点eq\o\ac(○,1)自变量x的次数是一次幂,且只含有x的一次项;eq\o\ac(○,2)比例系数k≠0;eq\o\ac(○,3)常数项可有可无。2.一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移│b│个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).3.系数k的意义:k表征直线的倾斜程度,k值相同的直线相互平行,k不同的直线相交。系数b的意义:b是直线与y轴交点的纵坐标。当k>0时,直线y=kx+b从左向右上升,即随着x的增大y也增大。当k<0时,直线y=kx+b从左向右下降,即随着x的增大y反而减小。直线y=kx+b与y轴的交点是点(0,b)与x轴的交点是点(-,0)4.一次函数图像和解析式的系数之间的关系k>0,撇b>0,与y轴交点在x轴上方k>0,撇b>0,与y轴交点在x轴上方一二三象限从左到右上升Y随x的增大而增大k>0,撇b<0,与y轴交点在x轴下方一三四象限从左到右上升Y随x的增大而增大K<0,捺K<0,捺b>0,与y轴交点在x轴上方一二四象限从左到右下降Y随x的增大而减小K<0,捺b<0,与y轴交点在x轴下方二三四象限从左到右下降Y随x的增大而减小5.画一次函数图像的最简单方法:(1)先选取两点,通常选出点(0,b)与点(-,0);(2)在坐标平面内描出点(0,0)与点(1,k);(3)过点(0,b)与点(-,0)做一条直线.这条直线就是正比例函数y=kx(k≠0)的图象.6.待定系数法确定一次函数解析式:根据已知的自变量与函数的对应值,或函数图像直线上的点坐标。步骤:eq\o\ac(○,1)写出函数解析式的一般形式,其中包括未知的系数(需要确定这些系数,因此叫做待定系数).eq\o\ac(○,2)把自变量与函数的对应值(可能是以函数图象上点的坐标的形式给出)即x、y的值代入函数解析式中,得到关于待定系数的方程或方程组.(有几个待定系数,就要有几个方程)eq\o\ac(○,3)解方程或方程组,求出待定系数的值,从而写出所求函数的解析式.7.解析式与图像上点相互求解的题型eq\o\ac(○,1)求解析式:解析式未知,但知道直线上两个点坐标,将点坐标看作x、y值代入解析式组成含有k、b两个未知数的方程组,求出k、b的值在带回解析式中就求出解析式了。eq\o\ac(○,2)求直线上点坐标:解析式已知,但点坐标只知道横纵坐标中得一个,将其代入解析式求出令一个坐标值即可。四、一次函数与一元一次方程由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值y=0时,求相应的自变量x的值,从图象上看,这相当于已知直线y=ax+b,确定它与x轴交点的横坐标的值.五、一次函数与一元一次不等式由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值y大(小)于0时,求自变量x相应的取值范围.用一次函数图象来解首

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论