版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhatistheFutureforSlopeStabilityAnalysis?
(AreWeApproachingtheLimitsofLimitEquilibriumAnalyses?)Introduction
LimitEquilibriummethodsofsliceshavebeen“Good”forthegeotechnicalengineeringprofessionsincethemethodshaveproducedfinancialbenefitEngineersareoftensurprisedattheresultstheyareabletoobtainfromLimitEquilibriummethodsSoWhyChange?ThereareFundamentalLimitationswithLimitEquilibriumMethodsofSlices??TheboundariesforaFREEBODYDIAGRAMarenotknown-TheSHAPEfortheslipsurfacemustbeassumedTheLOCATIONofthecriticalslipsurfacemustbe foundbyTRIALandERRORSHAPEandLOCATIONarethedrivingforceforaparadigmshift
ObjectivesofthisPresentation:ToshowthegradualchangethatisemerginginthewaythatslopestabilityanalysescanbeundertakenToillustratethebenefitsassociatedwithimprovedproceduresfortheassessmentofstressesinaslopeOutlineofPresentationProvideabriefSummaryofcommonLimitEquilibriummethodsalongwiththeirlimitations(2-D&3-D)Takethe
FIRST
stepforwardthroughuseofanindependentstressanalysisTaketheSECONDstepforwardthroughuseofOptimizationTechniquesIsaLimitEquilibriumAnalysisanUpperBoundorLowerBoundSolution?LimitEquilibriumMethodsprimarilysatisfytherequirementsofanupperboundtypeofsolutionReason:theshape
ofslipsurfaceisselectedbytheanalystandtherebyadisplacementboundaryconditionisimposedLimitEquilibriumandFiniteElementBasedMethodsofAnalysesWWWWWWWWNLimitEquilibriumMethodofAnalysisSm=tadldlsndlFiniteElementBased
MethodofAnalysisldtadlQUESTION:HowcantheNormalStressatthebaseofaslicebemostaccuratelycomputed?ConsidertheFreeBodyDiagramsusedtocalculatetheNormalStress?AssumptionforallLimitEquilibriumAnalysisSoilsbehaveasMohr-Coulombmaterials
(i.e.,friction,f',andcohesion,c')Factorofsafety,Fs,forthecohesivecomponentisequaltothefactorofsafetyforthefrictionalcomponentFactorofsafetyisthesameforallslices()[]msnsSFuFc=-+bfsb'tan'SummaryofAvailableEquationsAssociatedwithaLimitEquilibriumAnalysisEquations(knowns): QuantityMomentequilibrium nVerticalforceequilibrium nHorizontalforceequilibrium nMohr-Coulombfailurecriterion n
4nUnknowns:
QuantityTotalnormalforceatbaseofslice nShearforceatthebaseofslice,Sm nInterslicenormalforce,E n-1Intersliceshearforce,X n-1Pointofapplicationofintersliceforce,E n-1Pointofapplicationofnormalforce nFactorofsafety,Fs 1
6n-2SummaryofUnknownsAssociatedwithaLimitEquilibriumAnalysisOneFsperslidingmassForcesActingonEachSliceFocusonSmbyxSmXREREXLSlipsurfaceGroundsurfaceWhRN=snbbfNLPhreaticlineMobilizedShearForce,SmforSaturated-UnsaturatedSoils()[]()swasansmFuuFuFcSbfbfsbbtan'tan'-+-+=Onlynewvariablerequiredforsolvingsaturated-unsaturatedsoilsproblemsistheshearforcemobilizedφb=Frictionanglewithrespecttomatricsuctionua=Pore-airpressureuw=Pore-waterpressure[]Momentequilibrium,Fm:Forceequilibrium,Ff:ååå-ïþïýüïîïíì÷÷øöççèæ-+=NfWx'tanR'tantanuNR'cFbwmfffbbååþýüîíì÷÷øöççèæ-+=aafffbabsincos'tan'tantancos'NuNcFbwfPore-airpressuresareassumedtobezerogaugeNormalforceatbaseofslice:LimitEquilibriummethodsdifferintermsofhow(XR-XL)iscomputedandoverallstaticssatisfiedLimitEquilibriumproblemisindeterminate:Canapplyanassumption(Historicalsolution)Canutilizeadditionalphysics(Futuresolution)()FFuFcXXWNbwLR'tansincostansinsin'faafabab++---=sxbaArea=Interslicenormalforce(E)widthofslice,bsxtxysyDistance(m)Elevation
(m)txybaArea=Intersliceshearforce(X)VerticalsliceDistance(m)Elevation
(m)ò=baxydyXtò=baxdyEsStressesontheBoundaryBetweenSlicesMorgenstern&Price,1965SummaryofLimitEquilibriumMethodsandAssumptionsMethod
EquilibriumSatisfied
Assumptions
Ordinary
Moment,tobase
EandX=0
Bishop’sSimplified
Vertical,Moment
Eishorizontal,X=0
Janbu’sSimplified
Vertical,Horizontal
Eishorizontal,X=0,empiricalcorrectionfactor,f0,accountsforintersliceshearforces
Janbu’sGeneralized
Vertical,Horizontal
Eislocatedbyanassumedlineofthrust
Spencer
Vertical,Horizontal,Moment
ResultantofEandXareofconstantslope
ForcesActingonOneSliceinOrdinaryorConventionalMethodhWbbaN=sbnNSmForcesActingonOneSliceinBishop’’sSimplifiedandJanbu’sSimplifiedMethodshWbbaN=sbnNSmERELSummaryofLimitEquilibriumMethodsandAssumptionsDirectionofXandEistheaverageofthegroundsurfaceslopeandtheslopeatthebaseofasliceVerticalHorizontalLoweandKarafiathDirectionofXandEisparalleltothegroundVerticalHorizontalCorpsofEngineersDirectionofEandXisdefinedbyanarbitraryfunction.PercentofthefunctionrequiredtosatisfymomentandforceequilibriumiscalledλVerticalHorizontalMomentMorgenstern-Price,GLEAssumptionsEquilibriumSatisfiedMethodForcesActingonOneSliceinSpencer’’s,Morgenstern-Price,andGLEMethodshWbbaN=sbnNSmERELXRXLVariousIntersliceForceFunctionsProposedbyMorgenstern&Price(1965)Spencer’’sWilsonandFredlund(1983)Usedafiniteelementstressanalysis(withgravityswitchedon)todetermineashapefortheIntersliceForceFunctionIntersliceForceFunctionforaDeep-seatedSlipSurfaceThrougha1:2SlopeX=Eλf(x)DefinitionofDimensionlessDistancef(x)islargestatmid-pointInflectionpointsnearcrest&toeGeneralizedFunctionalShapewhere:K=magnitudeoffunctionatmid-slopee=baseofnaturallogC=variabletodefineinflectionpointn=variabletodefinesteepnessω=dimensionlessx-position()2/)(nnCKexfw-=WilsonandFredlund,1983X=Eλf(x)DimensionlessDistanceUniquefunctionof““slopeangle””forallslipsurfaces“C”coefficientversusslopeangleUniquefunctionof““slopeangle””forallslipsurfaces“n”coefficientversustangentofslopeangleComparisonofFactorsofSafetyCircularSlipSurface01.801.851.901.952.002.002.25lJanbu’’sGeneralizedSimplifiedBishopSpencerMorgenstern-Pricef(x)=constantOrdinary=1.928FfFmFredlundandKrahn1975FactorofsafetyMomentandForceLimitEquilibriumFactorsofSafetyForaCirculartypeslipsurfaceMomentlimitequilibriumanalysisForcelimitequilibriumanalysisFredlundandKrahn,1975Lambda,lFactorofsafetyForceandMomentLimitequilibriumFactorsofSafetyforaplanartoeslipsurfaceForcelimitequilibriumanalysisMomentlimitequilibriumanalysisLambda,lFactorofsafetyKrahn2003ForceandMomentLimitequilibriumFactorsofSafetyforacompositeslipsurfaceMomentlimitequilibriumanalysisForcelimitequilibriumanalysisLambda,lFactorofsafetyFredlundandKrahn1975ForceandMomentLimitequilibriumFactorsofSafetyfora““SlidingBlock””typeslipsurfaceMomentlimitequilibriumanalysisForcelimitequilibriumanalysisLambda,lFactorofsafetyKrahn2003ExtensionsofMethodsofSlicestoThree-dimensionalMethodsofColumnsHovland(1977)–3-DofOrdinaryChenandChameau(1982)–3-DofSpencerCavounidis(1987)–3-DFs>2-DFsHungr(1987)–3-DofBishopSimplifiedLamandFredlund(1993)–3-Dwithf(x)onall3planes;3-DofGLEShapeandLocationBecomeEvenMoreDifficulttoDefinein3-DTwoPerpendicularSectionsThrougha3-DSlidingMassSectionParalleltoMovementSectionPerpendiculartoMovementFreeBodyDiagramofaColumnwithAllIntersliceForcesParallelPerpendicularBaseIntersliceForceFunctionsforTwooftheDirectionsX/EV/PFirstStepForwardQuestion:IstheNormalStressatthebaseofeachsliceasaccurateascanbeobtained?IstheNormalStressonlydependentupontheforcesonaverticalslice?ImprovementofNormalStressComputationsFredlundandScoular1999LimitequilibriumandfiniteelementnormalstressesforatoeslipsurfaceFromlimitequilibriumanalysisFromfiniteelementanalysisLimitequilibriumandfiniteelementnormalstressesforadeep-seatedslipsurfaceFromfiniteelementanalysisFromlimitequilibriumanalysisLimitequilibriumandfiniteelementnormalstressesforananchoredslopeFromfiniteelementanalysisFromlimitequilibriumanalysisToillustrateproceduresforcombiningafiniteelementstressanalysiswithconceptsoflimitingequilibrium.(i.e.,finiteelementmethodofslopestabilityanalysis)TocompareresultsofafiniteelementslopestabilityanalysisandconventionallimitequilibriummethodsUsingLimitEquilibriumConceptsinaFiniteElementSlopeStabilityAnalysisObjective:Thecompletestressstatefromafiniteelementanalysiscanbe““imported””intoalimitequilibriumframeworkwherethenormalstressandtheactuatingshearstressarecomputedforanyselectedslipsurfaceHypothesisAssumption:Thestressescomputedfrom“switching-on”gravityaremorereasonablethanthestressescomputedonaverticalsliceMannerof““ImportingStresses”fromaFiniteElementAnalysisintoaLimitEquilibriumAnalysissnFinite
Element
Analysis
for
StressesLimit
Equilibrium
AnalysissntmMohrCircletmIMPORT:ActingNormalStressActuatingShearStressLimitEquilibriumAnalysisFiniteElementAnalysisforStressesBishop(1952)-stressesfromLimitEquilibriummethodsdonotagreewithactualsoilstressesCloughandWoodward(1967)-“meaningfulstabilityanalysiscanbemadeonlyifthestressdistributionwithinthestructurecanbepredictedreliably””Kulhawy(1969)-usednormalandshearstressesfromalinearelasticanalysistocomputefactorofsafety“EnhancedLimitStrengthMethod”BackgroundtoUsingStressAnalysesinSlopeStabilityStressLevelRezendiz1972Zienkiewiczetal1975Strength&StressLevelAdikariandCummins1985Enhancedlimitmethods(finiteelementanalysiswithalimitequilibriumFiniteElementSlopeStabilityMethodsDirectmethods(finiteelementanalysisonly)StrengthLevelKulhawy1969F[]--Z=1313墢¢¢åæèççöø÷÷æèççöø÷÷ìíïïïîïïïüýïïïþïïïDDLLfssss{}F=(c+tan)--c+tanA1313¢¢¢å¢¢¢¢¢¢¢åæèççöø÷÷æèççöø÷÷æèçöø÷ìíïïïîïïïüýïïïþïïïsfsssssfDDLLf*F=(c+tan)K墢¢åsftDDLLDefinitionofFactorofSafetyLoadincreasetofailureStrengthdecreasetofailureanalysis)DifferencesandSimilaritiesBetweentheFiniteElementSlopeStabilityandConventionalLimitEquilibriumDifferencesSolutionisdeterminateFactorofsafetyequationislinearSimilaritiesStillnecessarytoassumetheshapeoftheslipsurfaceandsearchbytrialanderrortolocatethecriticalslipsurfaceWhyhasn’’tFiniteElementSlopeStabilityMethodbeenextensivelyused?DifficultiesandperceptionsrelatedtothestressanalysisInabilitytotransferlargeamountsofdataandfindneededinformationNow:MicrocomputerhavedramaticallychangedourabilitytocombineFiniteElementandLimitEquilibriumanalysesDefinitionofFactorofSafetyKulhawy(1969)where:Sr=resistingshearstrengthorSm=mobilizedshearforceåå=mrFEMSSFbfs}'tan)u('c{Swnr-+=ActuatingShearNormalStressAnalysisStudyUndertakenbyFredlundandScoular(1999)AdoptedtheKulhawy(1969)procedureUsedSigma/WandSlope/WPoisson’sratiorange=0.33to0.48Elasticmodulus,E=20,000to200,000kPaCohesion,c'=10to40kPaFriction,'=10to30degreesComparedconventionalLimitEquilibriumresultswithFiniteElementslopestabilityresultsLocationofCenterofaSectionalongtheSlipSurfacewithinaFiniteElementAnalysisxyx-Coordinatey-CoordinateSlipSurfaceFiniteElement(r,s)srFictitiousslicedefinedwiththeLimitEquilibriumanalysisCenterofthebaseofaslice(x,y)PresentationofFiniteElementSlopeStabilityResultsConditionsAnalyzed:DryslopePiezometriclineat3/4height,exitingattoeDryslope,partiallysubmergedPiezometriclineat1/2heightandsubmergedtomid-heightSelected2:1Free-StandingSlopewithaPiezometricLineExitingattheToeoftheSlope20406080100120204060800CrestPiezometricLineToe21x-Coordinate(m)Note:Dryslopewith&withoutpiezometricliney-Coordinate(m)Selected2:1PartiallySubmergedSlopewithaHorizontalPiezometricLineatMid-Slope20406080100120204060800CrestToe21x-Coordinate(m)WaterPiezometricLiney-Coordinate(m)Note:Dryslopewith&withoutpiezometricline050100150200250300203040506070x-Coordinate(m)Actingandrestrictingshearstress(kPa)CrestToeShearStrengthShearForcePoissonRatio,m=0.33ShearStrengthandShearForcefora2:1DrySlopeCalculatedUsingtheFiniteElementSlopeStabilityMethodLocalandGlobalFactorsofSafetyfora2:1DrySlope012345672025303540455055606570x-CoordinateFactorofSafetyCrestToeLocalF(mLocalF(m=0.33)BishopMethod,F=2.360=2.173GlobalFactorsofSafetyBishop2.360Janbu2.173GLE(F.E.function)2.356Fs(m=0.33)2.342Fs(m=0.48)2.339Ordinary2.226sJanbuMethod,FsssFs=2.342Fs=2.339=0.48)FactorsofSafetyVersusStabilityNumberfora2:1DrySlopeasaFunctionofc'0.00.51.01.52.02.50510152025StabilityNumber,[gHtanf¢/c¢]FactorofSafetyc¢=20kPac¢=10kPac=40kPaFs(m=0.33)Fs(m=0.48)Fs(GLE)2:1DrySlope¢FactorofSafetyVersusStabilityCoefficientfora2:1DrySlopeasaFunctionof0.00.51.01.52.02.50.000.020.040.060.080.100.12StabilityCoefficient,[c¢/gH]FactorofSafetyf¢=30°f¢=10°f¢=20°2:1DrySlopesFs(m=0.33)F(m=0.48)Fs(GLE)sFactorofSafetyVersusStabilityCoefficientasaFunctionoffor2:1SlopewithaPiezometricLine0.01.62.00.000.020.040.060.080.100.12StabilityCoefficient,[c'/gH]Factorofsafetyf=30°f=20°f=10°2:1SlopewithpiezometriclineFs(m=0.33)Fs(m=0.48)Fs(GLE)LocationoftheCriticalSlipSurfaceforaSlopewithaPiezometricLinewithSoilPropertiesofc'=40kPaandf'=30°°70102010060504030908070110506040102030x
-
Coordinate
(m)80GLE
(F.E.
function)Fs
(m
=
0.33)Fs
(m
=
0.48)MethodXYRFactorofsafetyGLE(F.E.Function)58.556.037.91.741Fs(m=0.33)57.549.534.71.627Fs(m=0.48)57.553.037.81.661Y-Coordinate(m)LocationoftheCriticalSlipSurfaceforaSlopewithaPiezometricLinewheretheFactorofSafetyisClosestto1.070102010060504030908070506040102030110x
-
Coordinate
(m)80Fs
(m
=
0.48)Fs(m=0.33)GLE
(F.E.
function)sMethodXYRFactorofsafetyGLE(F.EFunction.63.559.039.61.102Fs(m=0.33)63.059.041.51.076F(m=0.48)61.559.542.31.100y-Coordinate(m)FactorofSafetyVersusStabilityCoefficientasaFunctionoffor2:1DrySlope,1/2Submerged0.00.51.01.52.02.53.03.50.000.020.040.060.080.100.12StabilityCoefficient,[c¢/gH]FactorofSafetyf¢=20°°f¢=10°°2:1Dryslope,one-halfsubmergedf¢=30°°Fs(m=0.33)Fs(m=0.48)Fs(GLE)FactorofSafetyVersusStabilityCoefficientasaFunctionoffor2:1SlopeHalfSubmergedwithPiezometricLine0.00.51.01.52.02.50.000.020.040.060.080.100.12StabilityCoefficient,[c¢/H]FactorofSafetyf¢=30°°f¢=10°°f¢=20°°2:1Slope,one-halfsubmergedgFs(m=0.33)Fs(m=0.48)Fs(GLE)1020100605040309080701107050604010203080Fs(m=0.33)Fs
(m
=
0.48)GLE(F.E.Function)sMethodXYRFactorofsafetyGLE(F.E.Function58.058.540.22.303Fs(m=0.33)52.550.531.82.259F(m=0.48)51.551.531.02.273LocationoftheCriticalSlipSurfaceforaHalfSubmergedSlopewheretheSoilPropertiesarec'=40kPaandf'=30°x-Coordinate(m)y-Coordinate(m)ConclusionsfromStep1ForwardNormalandActuatingShearstressesfromafiniteelementanalysisappeartoprovideamorereasonablerepresentationofthestressstateinaslopeTheEnhancedLimitmethodbyKulhawy(1969)appearstoopenthewaytosimulatemorecomplexslopestabilityproblemsEnhancedLimitmethodscanreadilybeusedinroutineengineeringpracticeGlobalfactorsofsafetyappeartobeessentiallythesameformostsimpleslopesSelectionofPoisson’sratiohassomeeffectontheEnhancedLimitfactorofsafetyFactorsofSafetyappeartodifferslightlyfor:LowcohesionvaluesHighanglesofinternalfrictionHowdotheResultsfromEnhancedLimitMethodsComparetoLimitEquilibriumMethods?LocalFactorsofSafetycanalsobecomputedbytheEnhancedLimitMethodSecondStepForwardQuestion:IsitpossibleforthecomputertodeterminetheShapeofthecriticalslipsurface?IsitpossibleforthecomputertodeterminetheLocationofthecriticalslipsurface?ImprovementonShapeandLocationHaandFredlund2002OptimizationTechniques(i.e.,DynamicProgramming)canbeusedtofindthepathwaywhichminimizesafunctionoftheshearstrengthavailabletotheactuatingshearstresswithinasoilmassHypothesisAssumption:Thestressescomputedfrom“switching-on”gravitycanbeusedtorepresentthestressstateinthesoilmassSlopeStabilityAnalysisUsingDynamicProgrammingCombinedwithaFiniteElementStressAnalysisDynamicProgramming(DP)optimizationtechniquesforslopestabilityanalysis(Spencer‘‘sMethod)wasintroducedbyBaker(1980)Yamagami&Ueta(1988)andZouetal.(1995)improvedontheBaker(1980)solutionbycouplingDynamicProgrammingwithaFiniteElementstressanalysisDefinitionofFactorofSafetySmoothcurveDiscreteform(1)(2)"Stage"B"Statepoint""n+1"AY"i""1"Riii+1kjSijk...ii+1...Fs=(ShearStrength)/(ActuatingShearStress)òò=BABAfsdLdLFttåå==DD=niiiniiifsLLF11ttDefinitionof“ReturnFunction““;Gstage"i+1"stage"i"lijlijfttfijijjsijtijqkijsijtElement(ij)Element(ij)R=ResistingShearStrength:S=ActuatingShearStressFs=(ShearStrength)/(ActuatingShearStress)Difficulttominimize!å=D-=niiisfiLFG1)(ttdLFGsBAf)(tt-=òå=-=niisiSFRG1)(ActuatingShearForcesandResistingShearS=ActuatingShearStressR=ResistingShearStrengthåå====D=neijijijneijijiiilSLS11ttåå====D=neijijfneijijifilRLRiji11ttijbijwaijaijneijijiluuucR}tan)(tan)({'1'ffs-+-+=å=Definitionof“OptimalFunction“:MinimumValueof“ReturnFunction““=theoptimalfunctionobtainedatpoint{k}ofstage[i+1],=theoptimalfunctionobtainedatpoint{j}instage[i],and=thereturnfunctioncalculatedwhenpassingfromthestatepoint{j}instage[i]tothestatepoint{k}instage[i+1].where:Introducean““optimalfunction””,H=OptimalFunctionG=ReturnFunctionå=-==niisiSFRGG1min)(minmin)(jHi),()()(1kjGjHkHiii+=+)(1kHi+)(jHi),(kjGiBoundaryConditionsof“OptimalFunction““Attheinitialstage,(i=1):Atthefinalstage,(i=n+1):where:=thenumberofstatepointsinthefinalstageH=OptimalFunction0)(1=jH1...1NPj=),()()(1kjGjHkHnnn+=+å=+-==niisimnSFRGkH11).()(...1=n+1NPk1+nNPTheMinimum(orOptimal)TravellingTimeProblemDYNAMICPROGRAMMINGSOLUTION116487511114121H1(1)=092747H1(1)=13AH(2)=812310B5674STAGENUMBER1234567d=(4,2)3G(1,2)=33105243252827224415532BATHEMINIMUMTRAVELLINGTIMEPROBLEMAnalyticalSchemeoftheDynamicProgrammingMethodEntrypoint"1""InitialABpoint"Y"Statepoint"...ii+1...XBB"n+1"X...StageNo."Exitpoint"Si"Gridelement"boundary""Searching
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 糕点拍摄课程设计案例
- 二零二五年度二手房贷款合同担保公司合同2篇
- 2025版音像制品制作与复制合同3篇
- 自动化专业毕业课程设计
- 摩擦学课程设计
- 教育科技与远程实验室技术考核试卷
- 二零二五年度企业财务信息化建设咨询合同2篇
- 二零二五年度2025安保员聘用及交通安全管理合同
- 用天正做供暖的课程设计
- 电子技术课程设计代
- 2022-2023学年浙江省杭州市萧山区五年级(上)期末科学试卷(苏教版)
- 船舶辅机:喷射泵
- 疼痛护理课件
- 农民专业合作社章程参考
- 财务会计制度及核算软件备案报告书
- 肌骨超声简介
- 神经外科临床实习教学计划
- 基本光刻工艺流程
- 胸腔闭式引流护理-2023年中华护理学会团体标准
- 高中体育足球教学教案 全册
- 艺术概论PPT完整全套教学课件
评论
0/150
提交评论