广东省佛山市佛山一中2023届数学高一上期末教学质量检测试题含解析_第1页
广东省佛山市佛山一中2023届数学高一上期末教学质量检测试题含解析_第2页
广东省佛山市佛山一中2023届数学高一上期末教学质量检测试题含解析_第3页
广东省佛山市佛山一中2023届数学高一上期末教学质量检测试题含解析_第4页
广东省佛山市佛山一中2023届数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A'B'C'D'(如图所示),其中A'D'=2,B'C'=4,A'B'=1,则直角梯形DC边的长度是A.5 B.2C.25 D.2.下列四个函数中,在其定义域上既是奇函数又是增函数的是()A. B.y=tanxC.y=lnx D.y=x|x|3.函数的图象大致是()A. B.C. D.4.已知指数函数在上单调递增,则的值为()A.3 B.2C. D.5.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定6.已知是锐角,那么是A.第一象限角 B.第一象限角或第二象限角C.第二象限角 D.小于的正角7.设集合,,则()A.{2,3} B.{1,2,3}C.{2,3,4} D.{1,2,3,4}8.下列四个集合中,是空集的是()A. B.C. D.9.对于用斜二测画法画水平放置的图形的直观图来说,下列描述不正确的是A.三角形的直观图仍然是一个三角形 B.的角的直观图会变为的角C.与轴平行的线段长度变为原来的一半 D.原来平行的线段仍然平行10.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为()A.y=2sin B.y=C.y=2sin D.y=2sin11.函数的单调递增区间为()A. B.C. D.12.已知函数则满足的实数的取值范围是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.经过两条直线和的交点,且垂直于直线的直线方程为__________14.在正三角形中,是上的点,,则________15.已知正三棱柱的棱长均为2,则其外接球体积为__________16.若函数在上单调递增,则的取值范围是__________三、解答题(本大题共6小题,共70分)17.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第次改良后所排放的废气中的污染物数量,可由函数模型给出,其中是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)18.已知集合,(Ⅰ)当时,求;;(Ⅱ)若,求实数的值19.甲乙两人用两颗质地均匀的骰子(各面依次标有数字1、2、3、4、5、6的正方体)做游戏,规则如下:若掷出的两颗骰子点数之和为3的倍数,则由原投掷人继续投掷,否则由对方接着投掷.第一次由甲投掷(1)求第二次仍由甲投掷的概率;(2)求游戏前4次中乙投掷的次数为2的概率20.若集合,,.(1)求;(2)若,求实数的取值范围.21.已知,且的最小正周期为.(1)求关于x的不等式的解集;(2)求在上的单调区间.22.已知,且函数是奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明.

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】根据斜二测画法,原来的高变成了45°方向的线段,且长度是原高的一半,∴原高为AB=2而横向长度不变,且梯形ABCD是直角梯形,∴DC=故选B2、D【解析】由奇偶性排除AC,由增减性排除B,D选项符合要求.【详解】,不是奇函数,排除AC;定义域为,而在上为增函数,故在定义域上为增函数的说法是不对的,C错误;满足,且在R上为增函数,故D正确.故选:D3、B【解析】根据函数的奇偶性和正负性,运用排除法进行判断即可.【详解】因为,所以函数是偶函数,其图象关于纵轴对称,故排除C、D两个选项;显然,故排除A,故选:B4、B【解析】令系数为,解出的值,又函数在上单调递增,可得答案【详解】解得,又函数在上单调递增,则,故选:B5、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D6、D【解析】根据是锐角求出的取值范围,进而得出答案【详解】因为是锐角,所以,故故选D.【点睛】本题考查象限角,属于简单题7、A【解析】根据集合的交集运算直接可得答案.【详解】集合,,则,故选:A.8、D【解析】对每个集合进行逐一检验,研究集合内的元素是否存在即可选出.【详解】选项A,;选项B,;选项C,;选项D,,方程无解,.选:D.9、B【解析】根据斜二测画法,三角形的直观图仍然是一个三角形,故正确;的角的直观图不一定的角,例如也可以为,所以不正确;由斜二测画法可知,与轴平行的线段长度变为原来的一半,故正确;根据斜二测画法的作法可得原来平行的线段仍然平行,故正确,故选B.10、C【解析】先从图象中看出A,再求出最小正周期,求出ω,代入特殊值后结合φ范围求出φ的值,得到答案.【详解】由图象可知A=2,因为-==,所以T=,ω=2.当x=-时,2sin=2,即sin=1,又|φ|<,解得φ=.故函数的解析式为y=2sin.故选:C11、C【解析】由解出范围即可.【详解】由,可得,所以函数的单调递增区间为,故选C.12、B【解析】根据函数的解析式,得出函数的单调性,把不等式,转化为相应的不等式组,即可求解.【详解】由题意,函数,可得当时,,当时,函数在单调递增,且,要使得,则,解得,即不等式的解集为,故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下:(1)根据函数的解析式,得出函数单调性;(2)合理利用函数的单调性,得出不等式组;(3)正确求解不等式组,得到结果.二、填空题(本大题共4小题,共20分)13、【解析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.14、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质15、【解析】分别是上,下底面的中心,则的中点为几何体的外接球的球心,16、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题三、解答题(本大题共6小题,共70分)17、(1);(2)至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【解析】(1)由题设可得方程,求出,进而写出函数模型;(2)由(1)所得模型,结合题设,并应用对数的运算性质求解不等式,即可知要使该企业所排放的废气中含有的污染物数量达标至少要改良的次数.【详解】(1)由题意得:,,∴当时,,即,解得,∴,故改良后所排放的废气中含有的污染物数量的函数模型为.(2)由题意得,,整理得:,即,两边同时取常用对数,得:,整理得:,将代入,得,又,∴,综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.18、(Ⅰ),(Ⅱ)m的值为8【解析】由,(Ⅰ)当m=3时,,则(Ⅱ),此时,符合题意,故实数m的值为819、(1)(2)【解析】(1)由题意利用古典概型求概率的计算公式求得结果(2)游戏的前4次中乙投掷的次数为2,包含3种情况,根据独立事件的乘法公式及互斥事件的加法公式,可计算结果【小问1详解】求第二次仍由甲投,说明第一次掷出的点数之和为3的倍数,所有的情况共有种,其中,掷出的点数之和为3的倍数的情况有、、、、、,、、、、、,共计12种情况,故第二次仍由甲投掷的概率为【小问2详解】由(1)可得掷出的两颗骰子点数之和为3的倍数的概率为,所以两颗骰子点数之和不为3的倍数的概率为,游戏的前4次中乙投掷的次数为2,可能乙投掷的次数为第二次第三次,则概率为,或第二次第四次,则概率为,或第三次第四次,则概率为,以上三个事件互斥,所以其概率为.20、(1);(2).【解析】(1)解不等式求出集合,再进行交集运算即可求解;(2)解不等式求集合,根据并集的结果列不等式即可求解.【详解】(1),,;(2),或,,.即实数的取值范围为.21、(1)(2)单调递增区间为和,单调递减区间为【解析】(1)首先利用两角差的正弦公式及二倍角公式将函数化简,再根据函数的最小正周期求出,即可得到函数解析式,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的范围,再跟正弦函数的性质计算可得.【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论