四川省泸县二中2022年高一上数学期末教学质量检测模拟试题含解析_第1页
四川省泸县二中2022年高一上数学期末教学质量检测模拟试题含解析_第2页
四川省泸县二中2022年高一上数学期末教学质量检测模拟试题含解析_第3页
四川省泸县二中2022年高一上数学期末教学质量检测模拟试题含解析_第4页
四川省泸县二中2022年高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若是第二象限角,是其终边上的一点,且,则()A. B.C. D.或2.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.3.与圆关于直线对称的圆的方程为()A. B.C. D.4.过原点和直线与的交点的直线的方程为()A. B.C. D.5.若直线与圆的两个交点关于直线对称,则,的直线分别为()A., B.,C., D.,6.已知函数(其中)的最小正周期为,则()A. B.C.1 D.7.已知,则的最大值为()A. B.C.0 D.28.将函数的周期扩大到原来的2倍,再将函数图象左移,得到图象对应解析式是()A. B.C. D.9.函数的图像大致为A. B.C. D.10.若直线l1∥l2,且l1的倾斜角为45°,l2过点(4,6),则l2还过下列各点中的A.(1,8) B.(-2,0)C.(9,2) D.(0,-8)11.下列关系中,正确的是()A. B.C. D.12.若函数,则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.,,则_________14.已知集合.(1)集合A的真子集的个数为___________;(2)若,则t的所有可能的取值构成的集合是___________.15.已知直线与两坐标轴所围成的三角形的面积为1,则实数值是____________16.已知角的终边经过点,则的值为_______________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间的图象(只作图不写过程).18.已知集合,其中,集合若,求;若,求实数的取值范围19.已知的数(1)有解时,求实数的取值范围;(2)当时,总有,求定的取值范围20.已知函数,.(1)求函数的最小正周期以及单调递增区间;(2)求函数在区间上的最小值及相应的的值.21.计算求值:(1)(2)22.已知函数,且满足.(1)判断函数在上的单调性,并用定义证明;(2)设函数,求在区间上的最大值;(3)若存在实数m,使得关于x的方程恰有4个不同的正根,求实数m的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据余弦函数的定义有,结合是第二象限角求解即可.【详解】由题设,,整理得,又是第二象限角,所以.故选:C2、B【解析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.3、A【解析】设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】先求出两直线的交点,从而可得所求的直线方程.【详解】由可得,故过原点和交点的直线为即,故选:C.5、A【解析】由圆的对称性可得过圆的圆心且直线与直线垂直,从而可求出.【详解】因为直线与圆的两个交点关于直线对称,故直线与直线垂直,且直线过圆心,所以,,所以,.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.6、D【解析】根据正弦型函数的最小正周期求ω,从而可求的值.【详解】由题可知,,∴.故选:D.7、C【解析】把所求代数式变形,转化成,再对其中部分以基本不等式求最值即可解决.【详解】时,(当且仅当时等号成立)则,即的最大值为0.故选:C8、D【解析】直接利用函数图象的与平移变换求出函数图象对应解析式【详解】解:将函数y=5sin(﹣3x)的周期扩大为原来的2倍,得到函数y=5sin(x),再将函数图象左移,得到函数y=5sin[(x)]=5sin()=5sin()故选D【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题.9、A【解析】详解】由得,故函数的定义域为又,所以函数为奇函数,排除B又当时,;当时,.排除C,D.选A10、B【解析】由题意求出得方程,将四个选项逐一代入,即可验证得到答案.【详解】由题直线l1∥l2,且l1的倾斜角为45°,则的倾斜角为45,斜率由点斜式可得的方程为即四个选项中只有B满足方程.即l2还过点(-2,0).故选B【点睛】本题考查直线方程的求法,属基础题.11、C【解析】根据自然数集、正整数集、整数集以及有理数集的含义判断数与集合的关系.【详解】对于A,,所以A错误;对于B,不是整数,所以,所以B错误;对于C,,所以C正确;对于D,因为不含任何元素,则,所以D错误.故选:C.12、C【解析】应用换元法求函数解析式即可.【详解】令,则,所以,即.故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】将平方,求出的值,再利用弦化切即可求解.【详解】,,,,,所以,所以.故答案为:14、①.15②.【解析】(1)根据集合真子集的计算公式即可求解;(2)根据集合的包含关系即可求解.【详解】解:(1)集合A的真子集的个数为个,(2)因为,又,所以t可能的取值构成的集合为,故答案为:15;.15、1或-1【解析】令x=0,得y=k;令y=0,得x=−2k.∴三角形面积S=|xy|=k2.又S=1,即k2=1,值是1或-1.16、【解析】到原点的距离.考点:三角函数的定义.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)最小正周期T=π;单调递减区间为(k∈Z);(2)图象见解析.【解析】(1)利用二倍角公式化简函数,再根公式求函数的周期和单调递减区间;(2)利用“五点法”画出函数的图象.【详解】解:f(x)=+cos2x=sin2x+cos2x=sin(2x+)(1)∴函数f(x)的最小正周期T==π,当2kπ+≤2x+≤2kπ+π,k∈Z,时,即2kπ+≤2x≤2kπ+π,k∈Z,故kπ+≤x≤kπ+π,k∈Z∴函数f(x)单调递减区间为[kπ+,kπ+π](k∈Z)(2)图象如下:18、(1);【解析】解出二次不等式以及分式不等式得到集合和,根据并集的定义求并集;由集合是集合的子集,可得,根据包含关系列出不等式,求出的取值范围.【详解】集合,由,则,解得,即,,则,则,即,可得,解得,故m的取值范围是【点睛】本题考查集合的交并运算,以及由集合的包含关系求参数问题,属于基础题.在解有关集合的题的过程中,要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.19、(1);(2)【解析】(1)通过分离参数法得,再通过配方法求最值即可(2)由已知得恒成立,化简后只需满足且,求解即可.【详解】(1)由已知得,所以(2)由已知得恒成立,则所以实数的取值范围为20、(1);;(2);.【解析】(1)利用余弦函数的周期公式计算可得最小正周期,借助余弦函数单调增区间列出不等式求解作答.(2)求出函数的相位范围,再利用余弦函数性质求出最小值作答.【小问1详解】函数中,由得的最小正周期,由,解得,即函数在上单调递增,所以的最小正周期是,单调递增区间是.【小问2详解】当时,,则当,即时,,所以函数的最小值为,此时.21、(1)(2)1【解析】(1)以实数指数幂运算规则解之即可;(2)以对数运算规则解之即可.【小问1详解】【小问2详解】22、(1)见解析(2)时,.(3)【解析】(1)根据确定a.再任取两数,作差,通分并根据分子分母符号确定差的符号,最后根据定义确定函数单调性(2)先根据绝对值定义将函数化为分段函数,都可化为二次函数,再根据对称轴与定义区间位置关系确定最值,最后取两个最大值中较大值(3)先对方程变形得,设,转化为方程方程在有两个不等的根,根据二次函数图像,得实根分布条件,解得实数m的取值范围.试题解析:(1)由,得或0.因为,所以,所以.当时,,任取,且,则,因为,则,,所以在上为增函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论