2023届湘西市重点中学高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2023届湘西市重点中学高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2023届湘西市重点中学高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2023届湘西市重点中学高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2023届湘西市重点中学高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.下列哪组中的两个函数是同一函数()A.与 B.与C.与 D.与2.下列函数中哪个是幂函数()A. B.C. D.3.如图,四面体ABCD中,CD=4,AB=2,F分别是AC,BD的中点,若EF⊥AB,则EF与CD所成的角的大小是()A.30° B.45°C.60° D.90°4.圆的圆心和半径为()A.(1,1)和11 B.(-1,-1)和11C.(-1,-1)和 D.(1,1)和5.集合A=,B=,则集合AB=()A. B.C. D.6.圆关于直线对称的圆的方程为A. B.C. D.7.正方形的边长为,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.C. D.8.已知函数是上的偶函数,且在区间上是单调递增的,,,是锐角三角形的三个内角,则下列不等式中一定成立的是A. B.C. D.9.已知函数,则等于A.2 B.4C.1 D.10.已知幂函数在上单调递减,则的值为A. B.C.或 D.11.要得到的图象,需要将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位12.已知点在第二象限,则角的终边所在的象限为A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题(本大题共4小题,共20分)13.已知,且,则_______.14.函数y=的单调递增区间是____.15.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________16.的解集为_____________________________________三、解答题(本大题共6小题,共70分)17.函数(1)当时,求函数的值域;(2)当时,求函数的最小值18.已知角的顶点在坐标原点,始边与x轴非负半轴重合,终边经过点.(1)求的值;(2)求的值.19.已知函数.(1)证明为奇函数;(2)若在上为单调函数,当时,关于的方程:在区间上有唯一实数解,求的取值范围.20.已知函数,其中,且.(1)若函数的图像过点,且函数只有一个零点,求函数的解析式;(2)在(1)的条件下,若,函数在区间上单调递增,求实数的取值范围.21.已知.(1)化简;(2)若,求的值;(3)解关于的不等式:.22.已知函数,.(1)若在区间上是单调函数,则的取值范围;(2)在(1)的条件下,是否存在实数,使得函数与函数的图象在区间上有唯一的交点,若存在,求出的范围,若不存在,请说明理由.

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据同一函数的概念,逐项判断,即可得出结果.【详解】A选项,的定义域为,的定义域为,定义域不同,故A错;B选项,的定义域为,的定义域为,定义域不同,故B错;C选项,的定义域为,的定义域为,定义域不同,故C错;D选项,与的定义域都为,且,对应关系一致,故D正确.故选:D.2、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.3、A【解析】取BC的中点G,连结FG,EG.先证明出(或其补角)即为EF与CD所成的角.在直角三角形△EFG中,利用正弦的定义即可求出的大小.【详解】取BC的中点G,连结FG,EG.由三角形中位线定理可得:AB∥EG,CD∥FG.所以(或其补角)即为EF与CD所成的角.因为EF⊥AB,则EF⊥EG.因为CD=4,AB=2,所以EG=1,FG=2,则△EFG是一个斜边FG=2,一条直角边EG=1的直角三角形,所以,因为为锐角,所以,即EF与CD所成的角为30°.故选:A4、D【解析】根据圆的标准方程写出圆心和半径即可.【详解】因,所以圆心坐标为,半径为,故选:D5、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.6、A【解析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程7、B【解析】根据斜二测画法画直观图的性质,即平行于轴的线段长度不变,平行于轴的线段的长度减半,结合图形求得原图形的各边长,可得周长【详解】因为直观图正方形的边长为1cm,所以,所以原图形为平行四边形OABC,其中,,,所以原图形的周长8、C【解析】因为是锐角的三个内角,所以,得,两边同取余弦函数,可得,因为在上单调递增,且是偶函数,所以在上减函数,由,可得,故选C.点睛:本题考查了比较大小问题,解答中熟练推导抽象函数的图象与性质,合理利用函数的单调性进行比较大小是解答的关键,着重考查学生的推理与运算能力,本题的解答中,根据锐角三角形,得出与的大小关系是解答的一个难点.9、A【解析】由题设有,所以,选A10、A【解析】由函数为幂函数得,即,解得或.当时,,符合题意.当时,,不和题意综上.选A11、D【解析】由“左加右减上加下减”的原则可确定函数到的路线,进行平移变换,推出结果【详解】解:将函数向右平移个单位,即可得到的图象,即的图象;故选:【点睛】本题主要考查三角函数的平移.三角函数的平移原则为“左加右减上加下减”.注意的系数,属于基础题12、D【解析】由题意利用角在各个象限符号,即可得出结论.【详解】由题意,点在第二象限,则角的终边所在的象限位于第四象限,故选D.【点睛】本题主要考查了三角函数的定义,以及三角函数在各个象限的符号,其中熟记三角函数在各个象限的符号是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】根据题意,可知,结合三角函数的同角基本关系,可求出和再根据,利用两角差的余弦公式,即可求出结果.【详解】因为,所以,因为,所以,又,所以,所以.故答案为:.14、【解析】设函数,再利用复合函数的单调性原理求解.【详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:15、【解析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.16、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.三、解答题(本大题共6小题,共70分)17、(1)(2)答案见解析【解析】(1)化简函数,结合二次函数的图象与性质,即可求解;(2)根据函数的解析式,分,和,三种情况讨论,结合二次函数的性质,即可求解.【小问1详解】解:由题意,函数,可得函数在上单调递减,在上单调递增,所以函数在区间上的最大值为,最小值为,综上函数在上的值域为.【小问2详解】解:①当时,函数在区间上单调递减,最小值为;②当时,函数在区间上单调递减,在区间上单调递增,最小值为;③当时,函数在区间上单调递增,最小值为,综上可得:当时,函数的最小值为;当,函数的最小值为;当时,函数的最小值为.18、(1);(2)8.【解析】(1)根据三角函数的定义即可求得答案;(2)根据三角函数的定义求出,然后用诱导公式将原式化简,进而进行弦化切,最后求出答案.【小问1详解】由题意,,所以.【小问2详解】由题意,,则原式.19、(1)证明见解析(2)【解析】(1)先求函数的定义域,再根据的关系可证明奇偶性;(2)根据单调性及奇函数性质,有,再通过换元,转化为二次函数,通过区间分类讨论可求解.【小问1详解】对任意的,,则对任意的恒成立,所以,函数的定义域为,∴,∴,故函数为奇函数;【小问2详解】∵函数为奇函数且在上的单调函数,∴由可得,其中,设,则,则.∵则,若关于的方程在上只有一个实根,则或.所以,令,其中.所以,函数在时单调递增.①若函数在内有且只有一个零点,在内无零点.则,解得;②若为函数的唯一零点,则,解得,∵,则.且当时,设函数的另一个零点为,则,可得,符合题意.综上所述,实数的取值范围是.20、(1)或(2)【解析】(1)因为,根据函数的图像过点,且函数只有一个零点,联立方程即可求得答案;(2)因为,由(1)可知:,可得,根据函数在区间上单调递增,即可求得实数的取值范围.【详解】(1)根据函数的图像过点,且函数只有一个零点可得,整理可得,消去得,解得或当时,,当时,,综上所述,函数的解析式为:或(2)当,由(1)可知:要使函数在区间上单调递增则须满足解得,实数的取值范围为.【点睛】本题考查了求解二次函数解析式和已知复合函数单调区间求参数范围.掌握复合函数单调性同增异减是解题关键,考查了分析能力和计算能力,属于中等题.21、(1);(2);(3).【解析】(1)运用诱导公式和同角三角函数关系进行化简,即可得到化简结果;(2)结合(1)得到的结果,将问题转化为齐次式进行求解,即可计算出结果;(3)结合(1)得到的结果,将其转化为不等式即可求出结果.【详解】(1)因为,,,,,,,.(2)由(1)可知,=11(3)因为,可转化为整理可得,则,解得,故不等式的解集为.【点睛】关键点点睛:解答第一问时关键是需要熟练掌握诱导公式,对其进行化简,并能结合同角三角函数关系计算结果,解答第二问时可以将其转化为齐次式,即可计算出结果.22、(1)或;(2)存在,且的取值范围是.【解析】(1)分、两种情况讨论,根据函数在区间上单调可出关于的不等式,综合可得出实数的取值范围;(2)分、、、四种情况讨论,分析两个函数在区间上的单调性,根据已知条件可得出关于实数的不等式(组),综合可解得实数的取值范围.【小问1详解】解:当时在上单调递减.当时,是二次函数,其对称轴为直线,在区间上是单调函数,或,即或,解得:或或.综上:或.【小问2详解】解:①当时,单调递减,单调递增,则函数单调递增,因为,,由零点存在定理可知,存在唯一的使得,此时,函数与函数在区间上的图象有唯一的交点,合乎题意;②当时,二次函数的图象开口向下,对称轴为直线,所以,在上单调递减,单调递增,则函数在上单调递增,要使得函数与函数的图象在区间上有唯一的交点,则,解得,此时;③当时,二次函数的图象开口向上,对称轴,则在上单调递减,在上单调递增,则函数上单调递增,要使得函数与函数的图象在区间上有唯一的交点,则,解得,此时;④当时,二次函数的图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论