2022一模理科试题_第1页
2022一模理科试题_第2页
2022一模理科试题_第3页
2022一模理科试题_第4页
2022一模理科试题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四校联考第一次高考模拟考试数学试卷(理工类)考试说明:本试卷分第=1\*ROMANI卷(选择题)和第=2\*ROMANII卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B铅笔填涂,非选择题必须使用毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.参考公式:球的表面积:球的体积:回归方程:, 第=1\*ROMANI卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数的虚部为A.B.C.D.2.的值为A.B.C.D.3.已知等差数列满足,,,则的值为A.B.C.D.4.在中,为边上的中线,,则A.B.C.D.正视图侧视图俯视图正视图侧视图俯视图11111A.B.C.D.6.已知命题:有的三角形是等边三角形,则A.:有的三角形不是等边三角形B.:有的三角形是不等边三角形C.:所有的三角形都是等边三角形D.:所有的三角形都不是等边三角形开始开始输入整除是否输出结束7.阅读右面的程序框图,若输入,则输出的值分别为A.B.C.D.8.函数的零点的个数是A.B.C.D.ABCD9.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为(),则棋子就按逆时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到ABCD点处的所有不同走法共有A.种B.种C.种D.种10.设不等式组表示的平面区域为,不等式(,为常数)表示的平面区域为,为平面上任意一点,:点在区域内,:点在区域内,若是的充分不必要条件,则的取值范围是A.B.C.D.11.已知二面角的平面角为,点在二面角内,,,为垂足,且设到棱的距离分别为,当变化时,点的轨迹方程是A.B.C.D.12.已知抛物线,为其焦点,为其准线,过任作一条直线交抛物线于、两点,、分别为、在上的射影,为的中点,给出下列命题:①;②;③∥;④与的交点在轴上;⑤与交于原点.其中真命题的个数为A.个B.个C.个D.个2022年四校联考第一次高考模拟考试数学试卷(理工类)第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题后的横线上.)13.某市有三类医院,甲类医院有病人,乙类医院有病人,丙类医院有病人,为调查三类医院的服务态度,利用分层抽样的方法抽取人进行调查,则从乙类医院抽取的人数为人.14.已知三棱锥,,平面,其中,四点均在球的表面上,则球的表面积为.15.已知集合表示的区域为,集合表示的区域为,向区域内随机抛掷一粒豆子,则豆子落在区域内的概率为.16.若,则定义为曲线的线.已知,,则的线为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)已知中,角所对的边长分别为,若,,求的面积.18.(本小题满分12分)C已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.C(Ⅰ)求证:直线平面;(Ⅱ)求平面和平面所成的锐二面角的余弦值.(本小题满分12分)改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村到年十年间每年考入大学的人数.为方便计算,年编号为,年编号为,…,年编号为.数据如下:年份(x)人数(y)年份(x)人数(y)1234567891035811131417223031(Ⅰ)从这年中随机抽取两年,求考入大学人数至少有年多于人的概率;(Ⅱ)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值.20.(本小题满分12分)已知椭圆:,分别为左,右焦点,离心率为,点在椭圆上,,,过与坐标轴不垂直的直线交椭圆于两点.(Ⅰ)求椭圆的方程;(Ⅱ)在线段上是否存在点,使得以线段为邻边的四边形是菱形?若存在,求出实数的取值范围;若不存在,说明理由.21.(本小题满分12分)已知函数(,),.(Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立;(Ⅱ)记,(ⅰ)若在上单调递增,求实数的取值范围;(ⅱ)证明:.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线经过⊙上的点,并且⊙交直线于,,连接.(Ⅰ)求证:直线是⊙的切线;(Ⅱ)若⊙的半径为,求的长.AACBEOD23.(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论